Introduction and Motivation
Application: Endpoint region in $B \rightarrow X_c \ell \bar{\nu}_\ell$
Does it help to get V_{ub}?

The Charm Quark
as a
Massive Collinear Quark

Thomas Mannel
(with Heike Boos, Thorsten Feldmann and Ben Pecjak)

Theoretische Physik I
Universität Siegen

Continuous Advances in QCD, May 2006
Contents

1 Introduction and Motivation
 • SCET in a Nutshell
 • Mass Terms in SCET
 • Power Counting Including the Mass

2 Application: Endpoint region in $B \rightarrow X_c \ell \bar{\nu}_\ell$
 • $B \rightarrow X_c \ell \bar{\nu}_\ell$ in usual $1/m_b$ Expansion
 • SCET for $B \rightarrow X_c \ell \bar{\nu}_\ell$: Tree level
 • SCET for $B \rightarrow X_c \ell \bar{\nu}_\ell$: QCD Corrections

3 Does it help to get V_{ub}?
 • Comparison of $B \rightarrow X_c \ell \bar{\nu}_\ell$ and $B \rightarrow X_u \ell \bar{\nu}_\ell$

Thomas Mannel, University of Siegen
Charm as a Massive Collinear Quark
SCET in an nutshell

- Special kinematic situation: Light degrees of freedom, which are fast in the rest frame of a heavy decaying object
 - $B \rightarrow \pi \pi$: fast pions
 - $B \rightarrow X_S \gamma$ in the endpoint region: Collimated X_S jet
 - $B \rightarrow X_u \ell \bar{\nu}_\ell$ in the endpoint region

- Light Cone Decomposition:
 light-like vectors n_+^μ and n_-^μ with $n_+ n_- = 2$ and

 \[p^\mu = (n_+ p) \frac{n_+^\mu}{2} + p_\perp^\mu + (n_- p) \frac{n_-^\mu}{2}, \quad p^2 = (n_+ p)(n_- p) + p_\perp^2 \]

- SCET kinematics: One large light cone component

(Bauer, Stewart, Pirjol, Flemming, Rothstein, Beneke, Feldmann, ...)

Thomas Mannel, University of Siegen

Charm as a Massive Collinear Quark
Introduction and Motivation
Application: Endpoint region in $B \rightarrow X_c \ell \bar{\nu}_\ell$
Does it help to get V_{ub}?

SCET in a nutshell
Mass Terms in SCET
Power Counting

SCET in an nutshell

- Special kinematic situation: Light degrees of freedom, which are fast in the rest frame of a heavy decaying object
 - $B \rightarrow \pi \pi$: fast pions
 - $B \rightarrow X_s \gamma$ in the endpoint region: Collimated X_s jet
 - $B \rightarrow X_u \ell \bar{\nu}_\ell$ in the endpoint region

- Light Cone Decomposition: light-like vectors n^μ_+ and n^μ_- with $n_+ n_- = 2$ and

$$p^\mu = (n_+ p) \frac{n_+}{2} + p_\perp + (n_- p) \frac{n_-}{2}, \quad p^2 = (n_+ p)(n_- p) + p_\perp^2$$

- SCET kinematics: One large light cone component

(Bauer, Stewart, Pirjol, Flemming, Rothstein, Beneke, Feldmann, ...)

Thomas Mannel, University of Siegen
Charm as a Massive Collinear Quark
SCET in an nutshell

- **Special kinematic situation**: Light degrees of freedom, which are fast in the rest frame of a heavy decaying object
 - $B \to \pi\pi$: fast pions
 - $B \to X_s\gamma$ in the endpoint region: Collimated X_s jet
 - $B \to X_u\ell\bar{\nu}_\ell$ in the endpoint region
- **Light Cone Decomposition**: light-like vectors n^μ_+ and n^μ_- with $n_+n_- = 2$ and
 \[
p^\mu = (n_+p)\frac{n^\mu_+}{2} + p^\mu_\perp + (n_-p)\frac{n^\mu_-}{2}, \quad p^2 = (n_+p)(n_-p) + p^2_\perp
 \]
- **SCET kinematics**: One large light cone component

(Bauer, Stewart, Pirjol, Flemming, Rothstein, Beneke, Feldmann, ...)

Thomas Mannel, University of Siegen | Charm as a Massive Collinear Quark
Special kinematic situation: Light degrees of freedom, which are fast in the rest frame of a heavy decaying object

- $B \rightarrow \pi\pi$: fast pions
- $B \rightarrow X_s\gamma$ in the endpoint region: Collimated X_s jet
- $B \rightarrow X_u\ell\bar{\nu}_\ell$ in the endpoint region

Light Cone Decomposition:
light-like vectors n_+^μ and n_-^μ with $n_+ n_- = 2$ and

$$p^\mu = (n_+ p) \frac{n_+^\mu}{2} + p_\perp^\mu + (n_- p) \frac{n_-^\mu}{2}, \quad p^2 = (n_+ p)(n_- p) + p_\perp^2$$

SCET kinematics: One large light cone component

(Bauer, Stewart, Pirjol, Flemming, Rothstein, Beneke, Feldmann, ...)

Thomas Mannel, University of Siegen
Charm as a Massive Collinear Quark
SCET in an nutshell

Special kinematic situation: Light degrees of freedom, which are fast in the rest frame of a heavy decaying object

- $B \to \pi\pi$: fast pions
- $B \to X_s\gamma$ in the endpoint region: Collimated X_s jet
- $B \to X_u\ell\bar{\nu}_\ell$ in the endpoint region

Light Cone Decomposition:
light-like vectors n_+^μ and n_-^μ with $n_+n_- = 2$ and

$$p^\mu = (n_+p)\frac{n_-^\mu}{2} + p_\perp^\mu + (n_-p)\frac{n_+^\mu}{2}, \quad p^2 = (n_+p)(n_-p) + p_\perp^2$$

SCET kinematics: One large light cone component

(Bauer, Stewart, Pirjol, Flemming, Rothstein, Beneke, Feldmann, ...)

Thomas Mannel, University of Siegen
Charm as a Massive Collinear Quark
SCET in an nutshell

Special kinematic situation: Light degrees of freedom, which are fast in the rest frame of a heavy decaying object

- $B \rightarrow \pi\pi$: fast pions
- $B \rightarrow X_s\gamma$ in the endpoint region: Collimated X_s jet
- $B \rightarrow X_u\ell\bar{\nu}_\ell$ in the endpoint region

Light Cone Decomposition:
light-like vectors n_μ^+ and n_μ^- with $n_+n_- = 2$ and

$$p_\mu = (n_+p)\frac{n_\mu^+}{2} + p_\perp + (n_-p)\frac{n_\mu^-}{2}, \quad p^2 = (n_+p)(n_-p)+p_\perp^2$$

SCET kinematics: One large light cone component

(Bauer, Stewart, Pirjol, Flemming, Rothstein, Beneke, Feldmann, ...)

Thomas Mannel, University of Siegen Charm as a Massive Collinear Quark
Power Counting

- **Hard Momenta:** \((n_+ p, p_\perp, n_- p) \sim m_b (1, 1, 1)\)
- **Collinear Momenta:** \((n_+ p, p_\perp, n_- p) \sim m_b (1, \lambda, \lambda^2)\)
- **Soft Momenta:** \((n_+ p, p_\perp, n_- p) \sim m_b (\lambda^2, \lambda^2, \lambda^2)\)

\[\lambda = \sqrt{\frac{p_{\text{jet}}^2}{m_b^2}} = \sqrt{\frac{\Lambda}{m_b}} \ll 1 \]

- Construct a Lagrangian to implement this
SCET in a nutshell

Mass Terms in SCET

Power Counting

- **Hard Momenta:** \((n_+ p, p_\perp, n_- p) \sim m_b(1, 1, 1)\)
- **Collinear Momenta:** \((n_+ p, p_\perp, n_- p) \sim m_b(1, \lambda, \lambda^2)\)
- **Soft Momenta:** \((n_+ p, p_\perp, n_- p) \sim m_b(\lambda^2, \lambda^2, \lambda^2)\)

\[
p_{\text{coll}}^2 \sim m_b^2 \lambda^2 \quad p_{\text{soft}}^2 \sim m_b^2 \lambda^4
\]

Construct a Lagrangian to implement this
Introduction and Motivation

Application: Endpoint region in $B \rightarrow X_c \ell \bar{\nu}_\ell$

Does it help to get V_{ub}?

SCET in a nutshell

Mass Terms in SCET

Power Counting

Power Counting

- **Hard Momenta:** $(n_+ p, p_\perp, n_- p) \sim m_b (1, 1, 1)$
- **Collinear Momenta:** $(n_+ p, p_\perp, n_- p) \sim m_b (1, \lambda, \lambda^2)$
- **Soft Momenta:** $(n_+ p, p_\perp, n_- p) \sim m_b (\lambda^2, \lambda^2, \lambda^2)$

\[p_{\text{coll}}^2 \sim m_b^2 \lambda^2 \quad p_{\text{soft}}^2 \sim m_b^2 \lambda^4 \]

Construct a Lagrangian to implement this

Thomas Mannel, University of Siegen

Charm as a Massive Collinear Quark
Power Counting

- **Hard Momenta:** \((n_+p, p_\perp, n_-p) \sim m_b(1, 1, 1)\)
- **Collinear Momenta:** \((n_+p, p_\perp, n_-p) \sim m_b(1, \lambda, \lambda^2)\)
- **Soft Momenta:** \((n_+p, p_\perp, n_-p) \sim m_b(\lambda^2, \lambda^2, \lambda^2)\)

\[
p_{coll}^2 \sim m_b^2 \lambda^2 \quad p_{soft}^2 \sim m_b^2 \lambda^4
\]

Construct a Lagrangian to implement this
Introduction and Motivation
Application: Endpoint region in $B \rightarrow X_c \ell \bar{\nu}_\ell$
Does it help to get V_{ub}?

SCET in a nutshell
Mass Terms in SCET
Power Counting

Power Counting

- **Hard Momenta:** $(n_+ p, p_\perp, n_- p) \sim m_b(1, 1, 1)$
- **Collinear Momenta:** $(n_+ p, p_\perp, n_- p) \sim m_b(1, \lambda, \lambda^2)$
- **Soft Momenta:** $(n_+ p, p_\perp, n_- p) \sim m_b(\lambda^2, \lambda^2, \lambda^2)$

$$p^2_{\text{coll}} \sim m_b^2 \lambda^2 \quad p^2_{\text{soft}} \sim m_b^2 \lambda^4$$

Construct a Lagrangian to implement this
Power Counting

- **Hard Momenta:** \((n_+ p, p_\perp, n_- p) \sim m_b(1, 1, 1)\)
- **Collinear Momenta:** \((n_+ p, p_\perp, n_- p) \sim m_b(1, \lambda, \lambda^2)\)
- **Soft Momenta:** \((n_+ p, p_\perp, n_- p) \sim m_b(\lambda^2, \lambda^2, \lambda^2)\)

\[
p^2_{\text{coll}} \sim m_b^2 \lambda^2 \quad p^2_{\text{soft}} \sim m_b^2 \lambda^4
\]

Construct a Lagrangian to implement this
Lagrangian of SCET

Rewrite QCD-Lagrangian:

\[\mathcal{L}_{\text{QCD}} = \bar{\psi}(i\mathcal{D})\psi = \bar{\xi}\left((\text{in}_-\mathcal{D}) + (i\mathcal{D}_\perp)\frac{1}{\text{in}_+\mathcal{D}(i\mathcal{D}_\perp)}\right)\frac{\hat{n}_+}{2}\xi \]

Fields on the light cone:

\[\xi(x) = \frac{\hat{n}_- - \hat{n}_+}{4}\psi(x) \]

\[\psi(x) = \left(1 + \frac{1}{(\text{in}_-\mathcal{D})(i\mathcal{D}_\perp)\frac{\hat{n}_+}{2}}\right)\xi(x) \]

Expand this according to the power counting.
Lagrangian of SCET

- **Rewrite QCD-Lagrangian:**
 \[
 \mathcal{L}_{\text{QCD}} = \bar{\psi}(i\slashed{D})\psi = \bar{\xi}
 \left(i\slashed{n} - D \right) + (i\slashed{D}_{\perp}) \frac{1}{in_{+}D}(i\slashed{D}_{\perp}) \right) \frac{\eta_{+}}{2}\xi
 \]

- **Fields on the light cone:**
 \[
 \xi(x) = \frac{\eta_{-} - \eta_{+}}{4} \psi(x)
 \]
 \[
 \psi(x) = \left(1 + \frac{1}{i\slashed{n} - D}(i\slashed{D}_{\perp}) \frac{\eta_{+}}{2} \right) \xi(x)
 \]

- **Expand this according to the power counting**
Lagrangian of SCET

- Rewrite QCD-Lagrangian:

\[\mathcal{L}_{\text{QCD}} = \bar{\psi}(i\slashed{D})\psi \]

\[= \bar{\xi}\left((\slashed{in}_- D) + (i\slashed{D}_\perp)\frac{1}{\slashed{in}_+ D}(i\slashed{D}_\perp)\right) \frac{\slashed{n}_+}{2} \xi \]

- Fields on the light cone:

\[\bar{\xi}(x) = \frac{\slashed{n}_- \slashed{n}_+}{4} \psi(x) \]

\[\psi(x) = \left(1 + \frac{1}{(\slashed{in}_- D)(i\slashed{D}_\perp)}\frac{\slashed{n}_+}{2}\right)\xi(x) \]

- Expand this according to the power counting
\[(iD_\perp) = (iD_\perp c) + gA_\perp s, \quad \text{(in}_+D) = (\text{in}_+pD_c) + gn_+A_s\]

- **SCET in a nutshell**

Mass Terms in SCET

Power Counting

1. **Leading term:**

\[
\mathcal{L}_{\text{SCET}} = \bar{\xi} \left((\text{in}_-D) + (iD_\perp c) \frac{1}{\text{in}_+D_c} (iD_\perp c) \right) \frac{n_+}{2} \xi
\]

2. **Many subleading terms**

(Stewart, Rothstein, Neubert, Beneke, Campanario, M.)

Thomas Mannel, University of Siegen

Charm as a Massive Collinear Quark
\((iD_\perp) = (iD_\perp c) + gA_\perp s \), \((i n_+ D) = (i n_+ p D_\perp c) + g n_+ A_s \)

- **Multipole Expansion of the soft fields:** (Beneke, Feldmann, Diehl)

\[
\begin{align*}
 x^{\mu} &= (n_+ x) \frac{n_\perp^\mu}{2} + x_\perp^{\mu} + (n_- x) \frac{n_+^\mu}{2} \\
 A_s(x) &= A_s(x_-) + [x_\perp \partial_\perp A_s](x_-) + \cdots
\end{align*}
\]

- **Leading term:**

\[
L_{\text{SCET}} = \bar{\xi} \left((i n_- D) + (i \not\! D_\perp c) \frac{1}{i n_+ D_\perp c} (i \not\! D_\perp c) \right) \frac{n_+}{2} \xi
\]

- **Many subleading terms** (Stewart, Rothstein, Neubert, Beneke, Campanario, M.)
(iD⊥) = (iD⊥c) + gA⊥s, \quad (in+D) = (in+pDc) + gn+A_s

\[x^\mu = (n_+x)\frac{n^-_\mu}{2} + x^\mu_\perp + (n_-x)\frac{n^+_\mu}{2} \]

\[A_s(x) = A_s(x_-) + [x_\perp \partial_\perp A_s](x_-) + \cdots \]

Leading term:

\[\mathcal{L}_{SCET} = \bar{\xi} \left((in_-D) + (i\not{D}_\perp c) \frac{1}{in_+D_c} (i\not{D}_\perp c) \right) \frac{1}{2} \xi \]

Many subleading terms (Stewart, Rothstein, Neubert, Beneke, Campanario, M.)
Introduction and Motivation

Application: Endpoint region in $B \rightarrow X_c \ell \bar{\nu}_\ell$

Does it help to get V_{ub}?

SCET in a nutshell

Mass Terms in SCET

Power Counting

$(iD_\perp) = (iD_{\perp c}) + gA_{\perp s}$, $(in_+ D) = (in_+ pD_c) + gn_+ A_s$

Multipole Expansion of the soft fields:

(Beneke, Feldmann, Diehl)

$$x^{\mu} = (n_+ x) \frac{n^{\mu}_-}{2} + x^{\mu}_\perp + (n_- x) \frac{n^{\mu}_+}{2}$$

$$A_s(x) = A_s(x_-) + [x_\perp \partial_\perp A_s](x_-) + \cdots$$

Leading term:

$$\mathcal{L}_{\text{SCET}} = \bar{\xi} \left((in_- D) + (iP_{\perp c}) \frac{1}{in_+ D_c} (iP_{\perp c}) \right) \frac{\not{n}_+}{2} \xi$$

Many subleading terms

(Stewart, Rothstein, Neubert, Beneke, Campanario, M.)
Introducing mass terms is obvious:

\[
\mathcal{L}_{\text{QCD}} = \bar{\psi} (i \not{D} - m_q) \psi \\
= \bar{\xi} \left((\text{in}_- D) + (i \not{D}_\perp - m_q) \frac{1}{\text{in}_+ D} (i \not{D}_\perp + m_q) \right) \frac{n_+}{2} \xi
\]

The fields remain the same

What is the power counting of the mass?
Introducing mass terms is obvious:

\[\mathcal{L}_{\text{QCD}} = \bar{\psi}(iD - m_q)\psi \]

\[= \bar{\xi} \left((in_\perp D) + (iD_\perp - m_q) \frac{1}{in_\perp D} (iD_\perp + m_q) \right) \frac{n_+}{2} \xi \]

The fields remain the same

What is the power counting of the mass?
Introducing mass terms is obvious:

\[\mathcal{L}_{\text{QCD}} = \bar{\psi} (i \not{D} - m_q) \psi \]

\[= \bar{\xi} \left((\mathbf{i} \not{D}) + (i \not{D}_\perp - m_q) \frac{1}{i \mathbf{D}_+} (i \not{D}_\perp + m_q) \right) \xi \]

The fields remain the same

What is the power counting of the mass?
Power Counting Including the Mass

1. **Light mass**: $m_q \sim m_b \lambda^2$
 - Leading Lagrangian remains the same
 - Mass appears as a subleading order perturbation

2. **Intermediate mass**: $m_q \sim m_b \lambda$
 - The mass appears in the leading Lagrangian
 - Nontrivial dependence on the Mass

 For the charm we have $m_c^2 \sim \Lambda_{QCD} m_b$

 - The charm quark can be a massive collinear quark

 (Neubert, M.)
Power Counting Including the Mass

1. light mass: $m_q \sim m_b \lambda^2$
 - Leading Lagrangian remains the same
 - Mass appears as a subleading order perturbation

2. intermediate mass: $m_q \sim m_b \lambda$
 - The mass appears in the leading Lagrangian
 - Nontrivial dependence on the Mass

For the charm we have $m_c^2 \sim \Lambda_{QCD} m_b$

The charm quark can be a massive collinear quark

(Weubert, M.)
Power Counting Including the Mass

1. light mass: $m_q \sim m_b \lambda^2$
 - Leading Lagrangian remains the same
 - Mass appears as a subleading order perturbation

2. intermediate mass: $m_q \sim m_b \lambda$
 - The mass appears in the leading Lagrangian
 - Nontrivial dependence on the Mass

For the charm we have $m_c^2 \sim \Lambda_{QCD} m_b$

- The charm quark can be a massive collinear quark
 (Neubert, M.)
Power Counting Including the Mass

1. light mass: $m_q \sim m_b \lambda^2$
 - Leading Lagrangian remains the same
 - Mass appears as a subleading order perturbation

2. intermediate mass: $m_q \sim m_b \lambda$
 - The mass appears in the leading Lagrangian
 - Nontrivial dependence on the Mass

For the charm we have $m_c^2 \sim \Lambda_{\text{QCD}} m_b$

The charm quark can be a massive collinear quark

(Neubert, M.)
Introduction and Motivation

Application: Endpoint region in $B \rightarrow X_c \ell \bar{\nu}_\ell$

Does it help to get V_{ub}?

$B \rightarrow X_c \ell \bar{\nu}_\ell$ in usual $1/m_b$ Expansion

Endpoint region: $\rho = m_c^2/m_b^2$, $y = 2E_\ell/m_b$

$$\frac{d\Gamma}{dy} \sim \Theta(1-y-\rho) \left[2 + \frac{\lambda_1}{(m_b(1-y))^2} \left(\frac{\rho}{1-y} \right)^2 \left\{ 3 - 4 \frac{\rho}{1-y} \right\} \right]$$

Using the above power counting: Order Unity Term!

Thomas Mannel, University of Siegen

Charm as a Massive Collinear Quark
Introduction and Motivation

Application: Endpoint region in $B \to X_c \ell \bar{\nu}_\ell$

Does it help to get V_{ub}?

$B \to X_c \ell \bar{\nu}_\ell$ in usual $1/m_b$ Expansion

- **Endpoint region:** $\rho = m_c^2/m_b^2$, $y = 2E_\ell/m_b$

\[
\frac{d\Gamma}{dy} \sim \Theta(1-y-\rho) \left[2 + \frac{\lambda_1}{(m_b(1-y))^2} \left(\frac{\rho}{1-y} \right)^2 \left\{ 3 - 4 \frac{\rho}{1-y} \right\} \right]
\]

- Using the above power counting: **Order Unity Term!**

Thomas Mannel, University of Siegen

Charm as a Massive Collinear Quark
B → X_c l \bar{\nu}_l in usual \frac{1}{m_b} Expansion

- Endpoint region: \(\rho = \frac{m_c^2}{m_b^2}, \ y = \frac{2E_l}{m_b} \)

\[\frac{d\Gamma}{dy} \sim \Theta(1-y-\rho) \left[2 + \frac{\lambda_1}{(m_b(1-y))^2} \left(\frac{\rho}{1-y} \right)^2 \left\{ 3 - 4 \frac{\rho}{1-y} \right\} \right] \]

- Using the above power counting: Order Unity Term!
SCET for $B \to X_c \ell \bar{\nu}_\ell$: Tree level

- Endpoint region:
 \[(p + k)^2 \sim \Lambda_{\text{QCD}}^2 m_b\]

- Collinear charm quark propagator

\[
S_c(p + k) = \frac{\not{n} - \not{p}}{2} \frac{i}{n_-(p + k) - \frac{m_c^2}{n+p}} = \frac{\not{n} - \not{u}}{2} \frac{i}{u + n_-k}
\]

- New kinematical variable:
 \[u = (n_-p) - \frac{m_c^2}{n+p}\]

Application: Endpoint region in $B \to X_c \ell \bar{\nu}_\ell$

- Does it help to get V_{ub}?

Does it help to get V_{ub}?

SCET for $B \to X_c \ell \bar{\nu}_\ell$: QCD Corrections

SCET for $B \to X_c \ell \bar{\nu}_\ell$: Tree level
SCET for $B \to X_c \ell \bar{\nu}_\ell$: Tree level

- Endpoint region:

 $$(p + k)^2 \sim \Lambda_{QCD} m_b$$

- Collinear charm quark propagator

$$S_c(p + k) = \frac{\hat{n}_-}{2} \frac{i}{n_-(p + k) - \frac{m_c^2}{n+p}} = \frac{\hat{n}_-}{2} \frac{i}{u + n_- k}$$

- New kinematical variable:

$$u = (n_- p) - \frac{m_c^2}{(n+p)}$$
SCET for $B \rightarrow X_c \ell \bar{\nu}_\ell$: Tree level

- Endpoint region:
 \[(p + k)^2 \sim \Lambda_{\text{QCD}} m_b\]
- Collinear charm quark propagator

\[
S_c(p + k) = \frac{\not{p}_-}{2} \frac{i}{n_- (p + k) - \frac{m_c^2}{n_+ p}} = \frac{\not{p}_-}{2} \frac{i}{u + n_- k}
\]

- New kinematical variable:
 \[u = (n_- p) - \frac{m_c^2}{(n_+ p)}\]
SCET for $B \to X_c \ell \bar{\nu}_\ell$: Tree level

- **Endpoint region:**
 $$(p + k)^2 \sim \Lambda_{\text{QCD}} m_b$$

- **Collinear charm quark propagator**

$$S_c(p + k) = \frac{\not{n}_-}{2} \frac{i}{n_-(p + k) - \frac{m_c^2}{n + p}} = \frac{\not{n}_-}{2} \frac{i}{u + n_- k}$$

- **New kinematical variable:**
 $$u = (n_- p) - \frac{m_c^2}{(n + p)}$$
Factorization Formula

\[d\Gamma = H \cdot J \otimes S \]

- **H**: Hard Coefficient \(\mu = m_b \)
- **J**: Jet Function
 \[\mu = \sqrt{\Lambda_{QCD}} m_b \]
- **S**: Soft Function, Shape function \(\mu = \Lambda_{QCD} \)
- Tree level: \(H = 1 \)
- Tree level:
 \[J = \delta(\omega - u) \]
- Tree level:
 \[S = f(\omega) \]
- Similar structure to subleading order in \(\Lambda_{QCD}/m_b \)
- More soft functions
Factorization Formula

\[d\Gamma = H \cdot J \otimes S \]

- **H**: Hard Coefficient \(\mu = m_b \)
- **J**: Jet Function
 \[\mu = \sqrt{\Lambda_{QCD} m_b} \]
- **S**: Soft Function, Shape function \(\mu = \Lambda_{QCD} \)

- Similar structure to subleading order in \(\Lambda_{QCD}/m_b \)
- More soft functions

- Tree level: \(H = 1 \)
 - Tree level:
 \[J = \delta(\omega - u) \]
 - Tree level:
 \[S = f(\omega) \]
Factorization Formula

\[d\Gamma = H \cdot J \otimes S \]

- **H**: Hard Coefficient \(\mu = m_b \)
- **J**: Jet Function
 \[\mu = \sqrt{\Lambda_{QCD} m_b} \]
- **S**: Soft Function, Shape function \(\mu = \Lambda_{QCD} \)

- Similar structure to subleading order in \(\Lambda_{QCD}/m_b \)
- More soft functions

- **Tree level**: \(H = 1 \)
- **Tree level**:
 \[J = \delta(\omega - u) \]
- **Tree level**:
 \[S = f(\omega) \]
Factorization Formula

\[d\Gamma = H \cdot J \otimes S \]

- **H**: Hard Coefficient \(\mu = m_b \)
- **J**: Jet Function \(\mu = \sqrt{\Lambda_{QCD}} m_b \)
- **S**: Soft Function, Shape function \(\mu = \Lambda_{QCD} \)
 - Tree level: \(H = 1 \)
 - Tree level: \(J = \delta(\omega - u) \)
 - Tree level: \(S = f(\omega) \)
 - Similar structure to subleading order in \(\Lambda_{QCD}/m_b \)
 - More soft functions
Introduction and Motivation
Application: Endpoint region in $B \to X_c \ell \bar{\nu}_\ell$
Does it help to get V_{ub}?

Factorization Formula

$$d\Gamma = H \cdot J \otimes S$$

- H: Hard Coefficient $\mu = m_b$
- J: Jet Function $\mu = \sqrt[4]{\Lambda_{QCD}} m_b$
- S: Soft Function, Shape function $\mu = \Lambda_{QCD}$

- Tree level: $H = 1$
- Tree level: $J = \delta(\omega - u)$
- Tree level: $S = f(\omega)$

- Similar structure to subleading order in Λ_{QCD}/m_b
- More soft functions
For $B \to X_u \ell \bar{\nu}_\ell$:

$$\frac{1}{\Gamma_u} \frac{d\Gamma}{d(n_p)} = \left(1 - \frac{14}{3} \frac{n_p}{m_b} \right) S(n_p) + \frac{s(n_p)}{2m_b} + \frac{1}{3m_b} \left[t(n_p) + u_a(n_p) - 5u_s(n_p) \right]$$

For $B \to X_c \ell \bar{\nu}_\ell$:

$$\frac{1}{\Gamma_c} \frac{d\Gamma}{d\ell} = \left(1 - \frac{14}{3} \frac{u}{m_b} - 8 \frac{m_c^2}{m_b^2} \right) S(u) + \frac{s(u)}{2m_b} \left[-4 \frac{m_c^2}{m_b^2} t_1(u) \right] + \frac{1}{3m_b} \left[t(u) + u_a(u) - 5u_s(u) \right]$$

(Bosch, Neubert, Paz)

(Boos, Feldmann, M., Pecjak)
Introduction and Motivation

Application: Endpoint region in $B \to X_c \ell \bar{\nu}_\ell$

Does it help to get V_{ub}?

$B \to X_c \ell \bar{\nu}_\ell$ in usual $1/m_b$

SCET for $B \to X_c \ell \bar{\nu}_\ell$: Tree level

SCET for $B \to X_c \ell \bar{\nu}_\ell$: QCD Corrections

For $B \to X_u \ell \bar{\nu}_\ell$:

\[
\frac{1}{\Gamma_u} \frac{d\Gamma}{d(n-p)} = \left(1 - \frac{14}{3} \frac{n-p}{m_b}\right) S(n-p) + \frac{s(n-p)}{2m_b} + \frac{1}{3m_b} \left[t(n-p) + u_a(n-p) - 5u_s(n-p)\right]
\]

(Bosch, Neubert, Paz)

For $B \to X_c \ell \bar{\nu}_\ell$:

\[
\frac{1}{\Gamma_c} \frac{d\Gamma}{d(u)} = \left(1 - \frac{14}{3} \frac{u}{m_b} - 8 \frac{m_c^2}{m_b^2}\right) S(u) + \frac{s(u)}{2m_b} - 4 \frac{m_c^2}{m_b^2} t_1(u) + \frac{1}{3m_b} \left[t(u) + u_a(u) - 5u_s(u)\right]
\]

(Boos, Feldmann, M., Pecjak)

Thomas Mannel, University of Siegen

Charm as a Massive Collinear Quark
SCET for $B \rightarrow X_c \ell \bar{\nu}_\ell$: QCD Corrections

- Compute the diagrams in SCET: leading order in λ
- $H = 1 + O(\alpha_s)$ is the same as in the massless case
SCET for $B \rightarrow X_c \ell \bar{\nu}_\ell$: QCD Corrections

- Compute the diagrams in SCET: leading order in λ
- $H = 1 + \mathcal{O}(\alpha_s)$ is the same as in the massless case
SCET for $B \rightarrow X_c \ell \bar{\nu}_\ell$: QCD Corrections

- Compute the diagrams in SCET: leading order in λ
- $H = 1 + \mathcal{O}(\alpha_s)$ is the same as in the massless case
Jet Function at order α_s

$$J(u, n+p) = \delta(u) + \frac{C_F \alpha_s}{4\pi} \left\{ \right.$$ \n\n$$\left(7 - \pi^2 \right) \delta(u) - 3 \left(\frac{1}{u} \right)^{[\mu^2/n+p]} + \left(\frac{\ln(u n+p/\mu^2)}{u} \right)^{[\mu^2/n+p]}$$ \n
$$+ \Theta(u) \left(\frac{u}{(u + m_c^2/n+p)^2} - \frac{4}{u} \ln \left(1 + \frac{u n+p}{m_c^2} \right) \right)$$ \n
$$+ \left(1 + \frac{2\pi^2}{3} \right) \delta(u) - \left(\frac{1}{u} \right)^{[m_c^2/n+p]}$$ \n
$$+ 4 \left(\frac{\ln(u n+p/m_c^2)}{u} \right)^{[m_c^2/n+p]} \left\} \right.$$
Jet Function at order α_s

\[
J(u, n+p) = \delta(u) + \frac{C_F \alpha_s}{4\pi} \left\{ (7 - \pi^2)\delta(u) - 3 \left(\frac{1}{u}\right)^{[\mu^2/n+p]} + \left(\frac{\ln(u n+p/\mu^2)}{u}\right)^{[\mu^2/n+p]}
+ \Theta(u) \left(\frac{u}{(u + m_c^2/n+p)^2} - \frac{4}{u} \ln \left(1 + \frac{u n+p}{m_c^2}\right)\right)
+ \left(1 + \frac{2\pi^2}{3}\right)\delta(u) - \left(\frac{1}{u}\right)^{[m_c^2/n+p]}
+ 4 \left(\frac{\ln(u n+p/m_c^2)}{u}\right)^{[m_c^2/n+p]} \right\}
\]
Comparison of $B \rightarrow X_c \ell \bar{\nu}_\ell$ and $B \rightarrow X_u \ell \bar{\nu}_\ell$

- Make use of the correspondence of the two variables

$$u = n_- p - \frac{m_c^2}{n_+ p} \quad \text{in} \quad B \rightarrow X_c \quad \leftrightarrow \quad p_+ = n_- p \quad \text{in} \quad B \rightarrow X_u$$

- Use hadronic variables

$$U = u + \bar{\Lambda} \quad \leftrightarrow \quad P_+ = p_+ + \bar{\Lambda}$$

- Consider a partially integrated spectrum \cite{Bosch, Neubert, Paz}

$$F_c(\Delta) = \frac{1}{\Gamma_c} \int_0^\Delta dU \frac{d\Gamma_c}{dU} = \frac{\Gamma_c(U < \Delta)}{\Gamma_c} = F_u(\Delta) + F_m(\Delta)$$
Comparison of $B \rightarrow X_c \ell \bar{\nu}_\ell$ and $B \rightarrow X_u \ell \bar{\nu}_\ell$

- Make use of the correspondence of the two variables

$$u = n_\rho - \frac{m_c^2}{n_\rho} \quad \text{in} \quad B \rightarrow X_c \quad \leftrightarrow \quad p_+ = n_\rho \quad \text{in} \quad B \rightarrow X_u$$

- Use hadronic variables

$$U = u + \bar{\Lambda} \quad \leftrightarrow \quad P_+ = p_+ + \bar{\Lambda}$$

- Consider a partially integrated spectrum (Bosch, Neubert, Paz)

$$F_c(\Delta) = \frac{1}{\Gamma_c} \int_0^\Delta dU \frac{d\Gamma_c}{dU} = \frac{\Gamma_c(U < \Delta)}{\Gamma_c} = F_u(\Delta) + F_m(\Delta)$$
Comparison of $B \rightarrow X_c \ell \bar{\nu}_\ell$ and $B \rightarrow X_u \ell \bar{\nu}_\ell$

- Make use of the correspondence of the two variables

$$u = n_+ p - \frac{m_c^2}{n_+ p} \quad \text{in} \quad B \rightarrow X_c$$

$$p_+ = n_+ p \quad \text{in} \quad B \rightarrow X_u$$

- Use hadronic variables

$$U = u + \bar{\Lambda} \quad \leftrightarrow \quad P_+ = p_+ + \bar{\Lambda}$$

- Consider a partially integrated spectrum (Bosch, Neubert, Paz)

$$F_c(\Delta) = \frac{1}{\Gamma_c} \int_0^\Delta dU \frac{d\Gamma_c}{dU} = \frac{\Gamma_c(U < \Delta)}{\Gamma_c} = F_u(\Delta) + F_m(\Delta)$$
Both $F_u(\Delta)$ and $F_m(\Delta)$ depend to leading order on the shape function

In $B \rightarrow X_u\ell \bar{\nu}_\ell$ we have to leading order the same shape function as the hadronic input \cite{Bosch, Neubert, Paz}.

Partially integrated rate:

$$F_u(\Delta) = \int_0^\Delta dP_+ \frac{d\Gamma_u}{dP_+}$$

Relate $B \rightarrow X_u\ell \bar{\nu}_\ell$ and $B \rightarrow X_c\ell \bar{\nu}_\ell$:

$$\int_0^\Delta dP_+ \frac{d\Gamma_u}{dP_+} = \frac{|V_{ub}|^2}{|V_{cb}|^2} \int_0^\Delta dU \frac{W(\Delta, U)}{dU} \frac{d\Gamma_c}{dU}$$

This defines a (calculable) weight function.
Both $F_u(\Delta)$ and $F_m(\Delta)$ depend to leading order on the shape function

In $B \rightarrow X_u \ell \bar{\nu}_\ell$ we have to leading order the same shape function as the hadronic input (Bosch, Neubert, Paz)

Partially integrated rate: $F_u(\Delta) = \int_0^\Delta dP_+ \frac{d\Gamma_u}{dP_+}$

Relate $B \rightarrow X_u \ell \bar{\nu}_\ell$ and $B \rightarrow X_c \ell \bar{\nu}_\ell$:

$$\int_0^\Delta dP_+ \frac{d\Gamma_u}{dP_+} = \frac{|V_{ub}|^2}{|V_{cb}|^2} \int_0^\Delta dU W(\Delta, U) \frac{d\Gamma_c}{dU}$$

This defines a (calculable) weight function
Both $F_u(\Delta)$ and $F_m(\Delta)$ depend to leading order on the shape function.

In $B \to X_u \ell \bar{\nu}_\ell$ we have to leading order the same shape function as the hadronic input (Bosch, Neubert, Paz).

Partially integrated rate: $F_u(\Delta) = \int_{0}^{\Delta} dP_+ \frac{d\Gamma_u}{dP_+}$

Relate $B \to X_u \ell \bar{\nu}_\ell$ and $B \to X_c \ell \bar{\nu}_\ell$:

$$\int_{0}^{\Delta} dP_+ \frac{d\Gamma_u}{dP_+} = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \int_{0}^{\Delta} dU \frac{W(\Delta, U)}{\exp} \frac{d\Gamma_c}{dU} \frac{\exp}{\theo}$$

This defines a (calculable) weight function.
Both $F_u(\Delta)$ and $F_m(\Delta)$ depend to leading order on the shape function.

In $B \to X_u \ell \bar{\nu}_\ell$ we have to leading order the same shape function as the hadronic input (Bosch, Neubert, Paz).

Partially integrated rate: $F_u(\Delta) = \int_0^\Delta dP^+ \frac{d\Gamma_u}{dP^+}$

Relate $B \to X_u \ell \bar{\nu}_\ell$ and $B \to X_c \ell \bar{\nu}_\ell$:

$$\int_0^\Delta dP^+ \frac{d\Gamma_u}{dP^+} = \frac{|V_{ub}|^2}{|V_{cb}|^2} \int_0^\Delta dU W(\Delta, U) \frac{d\Gamma_c}{dU}$$

This defines a (calculable) weight function.
Both $F_u(\Delta)$ and $F_m(\Delta)$ depend to leading order on the shape function.

In $B \rightarrow X_u \ell \bar{\nu}_\ell$ we have to leading order the same shape function as the hadronic input (Bosch, Neubert, Paz).

Partially integrated rate: $F_u(\Delta) = \int_0^\Delta dP_+ \frac{d\Gamma_u}{dP_+}$

Relate $B \rightarrow X_u \ell \bar{\nu}_\ell$ and $B \rightarrow X_c \ell \bar{\nu}_\ell$:

$$\int_0^\Delta dP_+ \frac{d\Gamma_u}{dP_+} = \frac{|V_{ub}|^2}{|V_{cb}|^2} \int_0^\Delta dU W(\Delta, U) \frac{d\Gamma_c}{dU}$$

This defines a (calculable) weight function.
Introduction and Motivation

Application: Endpoint region in $B \rightarrow X_c \ell \bar{\nu}_\ell$
Does it help to get V_{ub}?

$B \rightarrow X_c \ell \bar{\nu}_\ell$ vs. $B \rightarrow X_u \ell \bar{\nu}_\ell$

- Theoretical u spectrum with model shape function

- Uncertainties
 - Factorization scale: 10 – 15 %
 - Charm mass dependence: < 10 %
 - Λ_{QCD}/m_b Contributions \gtrsim 20 %
 - Duality??

Thomas Mannel, University of Siegen

Charm as a Massive Collinear Quark
Introduction and Motivation

Application: Endpoint region in $B \to X_c \ell \bar{\nu}_\ell$

Does it help to get V_{ub}?

$B \to X_c \ell \bar{\nu}_\ell$ vs. $B \to X_u \ell \bar{\nu}_\ell$

- Theoretical u spectrum with model shape function

- Uncertainties
 - Factorization scale: 10 – 15 %
 - Charm mass dependence: < 10 %
 - Λ_{QCD}/m_b Contributions \gtrsim 20 %
 - Duality??

Thomas Mannel, University of Siegen
Charm as a Massive Collinear Quark
Introduction and Motivation

Application: Endpoint region in $B \rightarrow X_c \ell \bar{\nu}_\ell$

Does it help to get V_{ub}?

$B \rightarrow X_c \ell \bar{\nu}_\ell$ vs. $B \rightarrow X_u \ell \bar{\nu}_\ell$

- Theoretical u spectrum with model shape function

- Uncertainties
 - Factorization scale: 10 – 15 %
 - Charm mass dependence: < 10 %
 - Λ_{QCD}/m_b Contributions \gtrsim 20 %
 - Duality??
Introduction and Motivation
Application: Endpoint region in $B \to X_c \ell \bar{\nu}_\ell$

Does it help to get V_{ub}? $B \to X_c \ell \bar{\nu}_\ell$ vs. $B \to X_u \ell \bar{\nu}_\ell$

- Theoretical u spectrum with model shape function

- Uncertainties
 - Factorization scale: 10 – 15 %
 - Charm mass dependence: < 10 %
 - Λ_{QCD}/m_b Contributions \gtrsim 20 %
 - Duality??

Thomas Mannel, University of Siegen
Charm as a Massive Collinear Quark
Theoretical u spectrum with model shape function

Uncertainties
- **Factorization scale**: $10 – 15 \%$
- **Charm mass dependence**: $< 10 \%$
- **Λ_{QCD}/m_b Contributions**: $\gtrsim 20 \%$
- **Duality??**
Introduction and Motivation
Application: Endpoint region in $B \rightarrow X_c \ell \bar{\nu}_\ell$
Does it help to get V_{ub}?

$B \rightarrow X_c \ell \bar{\nu}_\ell$ vs. $B \rightarrow X_u \ell \bar{\nu}_\ell$

- **Theoretical u spectrum with model shape function**

- **Uncertainties**
 - Factorization scale: 10 – 15 %
 - Charm mass dependence: < 10 %
 - Λ_{QCD}/m_b Contributions \gtrsim 20 %
 - Duality??

- **Uncertainties**
 - Factorization scale: 10 – 15 %
 - Charm mass dependence: < 10 %
 - Λ_{QCD}/m_b Contributions \gtrsim 20 %
 - Duality??
Simple D and D^* toy model:

$$\frac{1}{\Gamma_c} \frac{d^2 \Gamma_c}{d(n^- P) d(n^+ P)} \sim \delta \left(P^2 - \bar{M}_D^2 \right)$$

thick grey line: theoretical result for $F_u(\Delta)$

solid and dashed lines:
$F_u(\Delta)$ from weight function and toy model for $b \to c$ spectrum in different mass schemes

Δ must be sufficiently large
Simple D and D^* toy model:

\[
\frac{1}{\Gamma_c} \frac{d^2 \Gamma_c}{d(n^- P) d(n^+ P)} \sim \delta \left(P^2 - \overline{M}_D^2 \right)
\]

thick grey line: theoretical result for $F_u(\Delta)$

solid and dashed lines:
$F_u(\Delta)$ from weight function and toy model
for $b \rightarrow c$ spectrum in different mass schemes

Δ must be sufficiently large
Simple D and D^* toy model:

$$\frac{1}{\Gamma_c} \frac{d^2\Gamma_c}{d(n^- P)d(n^+ P)} \sim \delta \left(P^2 - \overline{M}_D^2 \right)$$

- Δ must be sufficiently large
Conclusions

- Charm can be treated as a massive collinear quark
- Power Counting as $m_c^2 \sim \Lambda_{QCD} m_b$
- Possible applications also to exclusive channels
 - $B \rightarrow D^{(*)} \ell \bar{\nu}_\ell$ at large recoil
 - $B \rightarrow D^{(*)} \pi$
 - ...
Conclusions

- Charm can be treated as a massive collinear quark
- Power Counting as $m_c^2 \sim \Lambda_{QCD} m_b$
- Possible applications also to exclusive channels
 - $B \rightarrow D^{(*)} \ell \bar{\nu}_\ell$ at large recoil
 - $B \rightarrow D^{(*)} \pi$
 - ...

Thomas Mannel, University of Siegen

Charm as a Massive Collinear Quark
Conclusions

- Charm can be treated as a massive collinear quark
- Power Counting as $m_c^2 \sim \Lambda_{QCD} m_b$
- Possible applications also to exclusive channels
 - $B \rightarrow D^{(*)} \ell \bar{\nu}_\ell$ at large recoil
 - $B \rightarrow D^{(*)} \pi$
 - ...