Higher Orders in Semileptonic B-Decays

Sascha Turczyk

Theoretische Physik 1
Universität Siegen

Theory Seminar Siegen
Monday, 31 January, 2011
Introduction

Motivation
Heavy Quark Effective Theory
Inclusive Decay: Calculational Method

Higher Orders

The Non-perturbative Parameters
Corrections in Moments and Spectra

Intrinsic Charm

Relevant Operator
The Effective Theory
Implications of Different Scenarios
Introduction

Higher Orders

Intrinsic Charm

Motivation

Heavy Quark Effective Theory

Inclusive Decay: Calculational Method

Motivation

What Do We Consider?

- Consider inclusive semi-leptonic decay $B \rightarrow X_c \ell \bar{\nu}_\ell$

Why Do We Consider This?

- High statistics in experiment
- Good theoretical control using Heavy Quark Expansion (HQE)

\Rightarrow Precise measurement of $|V_{cb}|$ possible

- Important ingredient for UT: $V_{ub}^* V_{ud} + V_{tb}^* V_{td} + V_{cb}^* V_{cd} = 0$
- Determination of ϵ_K depends on $|V_{cb}|^4$: $\sim 35\%$ of error budget!
Motivation

What Do We Consider?

- Consider inclusive semi-leptonic decay $B \rightarrow X_c \ell \bar{\nu}_\ell$

Why Do We Consider This?

- High statistics in experiment
- Good theoretical control using Heavy Quark Expansion (HQE)
 ⇒ Precise measurement of $|V_{cb}|$ possible
 - Important ingredient for UT: $V_{ub}^* V_{ud} + V_{tb}^* V_{td} + V_{cb}^* V_{cd} = 0$
 - Determination of ϵ_K depends on $|V_{cb}|^4$: $\sim 35\%$ of error budget!
Motivation

What Do We Consider?

- Consider inclusive semi-leptonic decay $B \rightarrow X_c \ell \bar{\nu}_\ell$

![Diagram showing $B \rightarrow X_c \ell \bar{\nu}_\ell$ decay]

Why Do We Consider This?

- High statistics in experiment
- Good theoretical control using Heavy Quark Expansion (HQE)
 \Rightarrow Precise measurement of $|V_{cb}|$ possible
 - Important ingredient for UT: $V_{ub}^* V_{ud} + V_{tb}^* V_{td} + V_{cb}^* V_{cd} = 0$
 - Determination of ϵ_K depends on $|V_{cb}|^4$: $\sim 35\%$ of error budget!
Cleanest Environment: Semi-leptonic B-decays
- Tree level
- Factorized hadronic and leptonic interaction
 ⇒ Two possibilities: exclusive and inclusive decays

Results from [PDG: J. Phys. G 37, 075021 (2010)]

$|V_{cb}|^{\text{excl.}} = (38.7 \pm 1.1) \cdot 10^{-3}$

$|V_{cb}|^{\text{incl.}} = (41.5 \pm 0.7) \cdot 10^{-3}$

⇒ Small Tension
Current Extraction Results

- Cleanest Environment: Semi-leptonic B-decays
 - Tree level
 - Factorized hadronic and leptonic interaction
 \Rightarrow Two possibilities: exclusive and inclusive decays

Results from [PDG: J. Phys. G 37, 075021 (2010)]

$|V_{cb}|_{\text{excl.}} = (38.7 \pm 1.1) \cdot 10^{-3}$

$|V_{cb}|_{\text{incl.}} = (41.5 \pm 0.7) \cdot 10^{-3}$

\Rightarrow Small Tension
Non-Perturbative Corrections

- Details later
- m_b is the largest scale in this problem
- Interactions of b-quark inside B-meson are of order $O(\Lambda_{QCD})$

\Rightarrow Perform an OPE in Λ_{QCD}/m_b
- Each step: Occurrence of non-perturbative parameters

Perturbative Corrections

- Rate can be written as
 \[\Gamma = \Gamma_0 + \frac{1}{m_b^2} \sum_i C^i_2(\alpha_s) O^i_5 + \frac{1}{m_b^3} \sum_i C^i_3 O^i_6 + \ldots \]
- Each Wilson Coefficient C^i_j has a power series in α_s

\Rightarrow Combined expansion in α_s and $1/m_b$: Heavy Quark Expansion
Theoretical Tools

Non-Perturbative Corrections

- Details later
- m_b is the largest scale in this problem
- Interactions of b-quark inside B-meson are of order $\mathcal{O}(\Lambda_{\text{QCD}})$

\Rightarrow Perform an OPE in Λ_{QCD}/m_b

- Each step: Occurrence of non-perturbative parameters

Perturbative Corrections

- Rate can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_b^2} \sum_i C_2^i(\alpha_s) \mathcal{O}_5^i + \frac{1}{m_b^3} \sum_i C_3^i \mathcal{O}_6^i + \ldots$$

- Each Wilson Coefficient C_j^i has a power series in α_s

\Rightarrow Combined expansion in α_s and $1/m_b$: Heavy Quark Expansion
Theoretical Tools

Non-Perturbative Corrections

- Details later
- m_b is the largest scale in this problem
- Interactions of b-quark inside B-meson are of order $O(\Lambda_{QCD})$

\Rightarrow Perform an OPE in Λ_{QCD}/m_b
- Each step: Occurrence of non-perturbative parameters

Perturbative Corrections

- Rate can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_b^2} \sum_i C_2^i(\alpha_s) O_5^i + \frac{1}{m_b^3} \sum_i C_3^i O_6^i + \ldots$$

- Each Wilson Coefficient C_j^i has a power series in α_s

\Rightarrow Combined expansion in α_s and $1/m_b$: Heavy Quark Expansion
Non-Perturbative Corrections

- Details later
- m_b is the largest scale in this problem
- Interactions of b-quark inside B-meson are of order $\mathcal{O}(\Lambda_{\text{QCD}})$

⇒ Perform an OPE in Λ_{QCD}/m_b

- Each step: Occurrence of non-perturbative parameters

Perturbative Corrections

- Rate can be written as
 \[\Gamma = \Gamma_0 + \frac{1}{m_b^2} \sum_i C^i_2(\alpha_s) \mathcal{O}_5^i + \frac{1}{m_b^3} \sum_i C^i_3 \mathcal{O}_6^i + \ldots \]

- Each Wilson Coefficient C^i_j has a power series in α_s

⇒ Combined expansion in α_s and $1/m_b$: Heavy Quark Expansion
Current Status: Theory

\[\alpha_s^n \]

\[\frac{1}{m_b^n} \]

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>*</td>
<td>* *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>* *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a \) Recent result: JHEP 0703 (2007) 087
\(b \) Recent result: JHEP 1011 (2010) 109
\(c \) Only corrections to \(\mu^2 \) JHEP 0712, 062 (2007)
\(e \) Only for BLM corrections and special kinematical point.

Topics Addressed in this Talk

- Part 2: Corrections to order \(\frac{1}{m_b^4} \) and \(\frac{1}{m_b^5} \)
- Part 3: Subtleties concerning \(m_c \)
Current Status: Theory

<table>
<thead>
<tr>
<th>α_s^n</th>
<th>$1/m_b^n$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●<sup>a</sup> ●<sup>b</sup></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>●</td>
<td>○<sup>c</sup></td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>●<sup>d</sup></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>○<sup>e</sup></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- **a**: Recent result: JHEP 0703 (2007) 087
- **b**: Recent result: JHEP 1011 (2010) 109
- **c**: Only corrections to μ_π^2 JHEP 0712, 062 (2007)
- **e**: Only for BLM corrections and special kinematical point.

Topics Addressed in this Talk

- **Part 2**: Corrections to order $1/m_b^4$ and $1/m_b^5$
- **Part 3**: Subtleties concerning m_c
Current Status: Experiment

Most Recent Fit Result

| Fit | $|V_{cb}|$ | m_b/GeV | m_c/GeV |
|-----------|---------|-----------|-----------|
| RESULT | 41.91 | 4.566 | 1.101 |
| Δ_{exp} | 0.48 | 0.034 | 0.045 |
| Δ_{theo} | 0.38 | 0.041 | 0.064 |
| $\Delta \Gamma_{sl}$ | 0.59 | | |
| Δ_{tot} | 0.85 | 0.055 | 0.078 |

- Experimental errors are competitive with theoretical errors
- General uncertainty due to operators with charm content [hep-ph/0511158]

Used in Fit

- Non-perturbative corrections up to $1/m_b^3$
- Electroweak corrections: Estimated $1 + A_{EW} \approx 1.014$
- Perturbative contributions: Using α_s, $\alpha_s^2\beta_0$ and $\alpha_s^3\beta_0^2$ to leading order in $1/m_b$: $A_{\text{pert}} \approx 0.908$

⇒ Study higher order corrections to improve knowledge on errors
Current Status: Experiment

- Experimental errors are competitive with theoretical errors
- General uncertainty due to operators with charm content [hep-ph/0511158]

| Fit | $|V_{cb}|$ | m_b/GeV | m_c/GeV |
|-------|-----------|-----------|-----------|
| RESULT | 41.91 | 4.566 | 1.101 |
| Δ_{exp} | 0.48 | 0.034 | 0.045 |
| Δ_{theo} | 0.38 | 0.041 | 0.064 |
| $\Delta \Gamma_{sl}$ | 0.59 |
| Δ_{tot} | 0.85 | 0.055 | 0.078 |

Used in Fit

- Non-perturbative corrections up to $1/m_b^3$
- Electroweak corrections: Estimated $1 + A_{\text{EW}} \approx 1.014$
- Perturbative contributions: Using α_s, $\alpha_s^2\beta_0$ and $\alpha_s^3\beta_0^2$ to leading order in $1/m_b$: $A_{\text{pert}} \approx 0.908$

⇒ Study higher order corrections to improve knowledge on errors
Current Status: Experiment

Most Recent Fit Result

| Fit | $|V_{cb}|$ | m_b/GeV | m_c/GeV |
|-------|--------|--------|--------|
| RESULT| 41.91 | 4.566 | 1.101 |
| Δ_{exp} | 0.48 | 0.034 | 0.045 |
| Δ_{theo} | 0.38 | 0.041 | 0.064 |
| $\Delta \Gamma_{sl}$ | 0.59 | | |
| Δ_{tot} | 0.85 | 0.055 | 0.078 |

- Experimental errors are competitive with theoretical errors
- General uncertainty due to operators with charm content [hep-ph/0511158]

Used in Fit

- Non-perturbative corrections up to $1/m_b^3$
- Electroweak corrections: Estimated $1 + A_{EW} \approx 1.014$
- Perturbative contributions: Using α_s, $\alpha_s^2 \beta_0$ and $\alpha_s^3 \beta_0^2$ to leading order in $1/m_b$: $A_{\text{pert}} \approx 0.908$

⇒ Study higher order corrections to improve knowledge on errors
Basic Ideas of Heavy Quark Effective Theory

Idea

- Describe hadrons with $P_H = M_H v$ containing single heavy quark
- Interaction inside hadron: “Off-shellness” of quark
 \[p_q = m_q v + k \] with residual momentum $k \sim O(\Lambda_{QCD})$
- Heavy quark spin-flavour symmetry as $m_q \to \infty$

HQET Fields

- Define “light” and “heavy” field using the projectors
 \[Q(x) = e^{-im_q v \cdot x} \left[\frac{1 + \frac{v}{2}}{2} e^{im_q v \cdot x} Q(x) + \frac{1 - \frac{v}{2}}{2} e^{im_q v \cdot x} Q(x) \right] \]
- “Integrate out” heavy component $\mathcal{Q}_v(x)$
- It remains the light field $\mathcal{Q}_v(x)$ as a static colour source
 \[\mathcal{L} = \mathcal{Q}_v(x) \left[i v \cdot D + i \vec{D} \frac{1}{2m_Q + i v \cdot D} i \vec{D} \right] \mathcal{Q}_v(x) \]
Basic Ideas of Heavy Quark Effective Theory

Idea
- Describe hadrons with $P_H = M_H v$ containing single heavy quark
- Interaction inside hadron: “Off-shellness” of quark
 - $p_q = m_q v + k$ with residual momentum $k \sim O(\Lambda_{\text{QCD}})$
- Heavy quark spin-flavour symmetry as $m_q \to \infty$

HQET Fields
- Define “light” and “heavy” field using the projectors
 $$Q(x) = e^{-im_q v \cdot x} \left[\frac{1 + \gamma}{2} e^{im_q v \cdot x} Q(x) + \frac{1 - \gamma}{2} e^{im_q v \cdot x} Q(x) \right]$$
- “Integrate out” heavy component $Q_v(x)$
- It remains the light field $Q_v(x)$ as a static colour source
 $$\mathcal{L} = \bar{Q}_v(x) \left[iv \cdot D + iD_\perp \frac{1}{2m_Q + iv \cdot D} iD_\perp \right] Q_v(x)$$
Basic Ideas of Heavy Quark Effective Theory

Idea

- Describe hadrons with \(P_H = M_H v \) containing single heavy quark
- Interaction inside hadron: “Off-shellness” of quark
 \[p_q = m_q v + k \text{ with residual momentum } k \sim \mathcal{O}(\Lambda_{\text{QCD}}) \]
- Heavy quark spin-flavour symmetry as \(m_q \to \infty \)

HQET Fields

- Define “light” and “heavy” field using the projectors
 \[Q(x) = e^{-im_q v \cdot x} \left[\frac{1 + \gamma}{2} e^{im_q v \cdot x} Q(x) + \frac{1 - \gamma}{2} e^{im_q v \cdot x} Q(x) \right] \]
- “Integrate out” heavy component \(\mathcal{Q}_v(x) \)
- It remains the light field \(Q_v(x) \) as a static colour source
 \[\mathcal{L} = \bar{Q}_v(x) \left[iv \cdot D + i \not{D}_\perp \frac{1}{2m_Q + iv \cdot D} i \not{D}_\perp \right] Q_v(x) \]
Basic Ideas of Heavy Quark Effective Theory

Idea

- Describe hadrons with $P_H = M_H v$ containing single heavy quark
- Interaction inside hadron: “Off-shellness” of quark
 \[p_q = m_q v + k \] with residual momentum $k \sim O(\Lambda_{QCD})$
 \[\Rightarrow \] Heavy quark spin-flavour symmetry as $m_q \to \infty$

HQET Fields

- Define “light” and “heavy” field using the projectors
 \[Q(x) = e^{-i m_q v \cdot x} \left[\frac{1 + \gamma}{2} e^{i m_q v \cdot x} Q(x) + \frac{1 - \gamma}{2} e^{i m_q v \cdot x} Q(x) \right] \]
 \[\Rightarrow \] “Integrate out” heavy component $\mathcal{Q}_v(x)$
- It remains the light field $Q_v(x)$ as a static colour source
 \[\mathcal{L} = \mathcal{Q}_v(x) \left[iv \cdot D + i \Phi \frac{1}{2m_Q + iv \cdot D} i \Phi \right] Q_v(x) \]
Introduction
Higher Orders
Intrinsic Charm

Motivation
Heavy Quark Effective Theory
Inclusive Decay: Calculational Method

Standard Expansion in HQET

Expand the Lagrangian

- Expand in Terms of iD/m_Q:
 \[
 \mathcal{L} = \bar{Q}_v(x) \left[iv \cdot D - \frac{1}{2m_Q} i\not{D}_\perp i\not{D}_\perp + \ldots \right] Q_v(x)
 \]

- Computations: Propagator depends on residual momentum $iD \rightarrow k$
- Corresponds to expand propagator in k/m_q for higher orders

Comments on Expansion

- Non-perturbative information: Matrix elements of operators
- General form: $\langle H_v | \bar{Q}_v(iD) \ldots (iD) Q_v(x) | H_v \rangle$
- Need to match expansion in k to operators
 - Additional gluon matrix elements to keep track on the ordering of k
Standard Expansion in HQET

Expand the Lagrangian

- Expand in Terms of iD/m_Q:
 \[
 \mathcal{L} = \bar{Q}_v(x) \left[iv \cdot D - \frac{1}{2m_Q} i\not\!D i\not\!D + \ldots \right] Q_v(x)
 \]

- Computations: Propagator depends on residual momentum $iD \to k$
- Corresponds to expand propagator in k/m_q for higher orders

Comments on Expansion

- Non-perturbative information: Matrix elements of operators
- General form: $\langle H_v | \bar{Q}_v(iD) \ldots (iD) Q_v(x) | H_v \rangle$
- Need to match expansion in k to operators
 ⇒ Additional gluon matrix elements to keep track on the ordering of k
Standard Expansion in HQET

Expand the Lagrangian

- Expand in Terms of iD/m_Q:
 \[
 \mathcal{L} = \bar{Q}_v(x) \left[i\mathbf{v} \cdot \mathbf{D} - \frac{1}{2m_Q} i\mathbf{\slashed{D}_\perp} i\mathbf{\slashed{D}_\perp} + \ldots \right] Q_v(x)
 \]

- Computations: Propagator depends on residual momentum $iD \to k$
- Corresponds to expand propagator in k/m_q for higher orders

Comments on Expansion

- Non-perturbative information: Matrix elements of operators
- General form: $\langle H_v|\bar{Q}_v(iD) \ldots (iD)Q_v(x)|H_v\rangle$
- Need to match expansion in k to operators

\Rightarrow Additional gluon matrix elements to keep track on the ordering of k
Standard Expansion in HQET

Expand the Lagrangian

- Expand in Terms of iD/m_Q:
 \[
 \mathcal{L} = \bar{Q}_v(x) \left[iv \cdot D - \frac{1}{2m_Q} i\not{\!D} \cdot i\not{\!D} + \ldots \right] Q_v(x)
 \]

- Computations: Propagator depends on residual momentum $iD \rightarrow k$
- Corresponds to expand propagator in k/m_q for higher orders

Comments on Expansion

- Non-perturbative information: Matrix elements of operators
- General form: $\langle H_v | \bar{Q}_v(iD) \ldots (iD) Q_v(x) | H_v \rangle$
- Need to match expansion in k to operators
 \[\Rightarrow\] Additional gluon matrix elements to keep track on the ordering of k
Remark on the Following Calculational Method

Outline of the Strategy

- Identify operators in order $1/m_b^n$
- Compute general decomposition of matrix element

Advantages

- Ordering preserved: Straight forward computation
 ⇒ Economical calculation, automatable
- Generalizable to arbitrarily high orders

Disadvantages

- Matrix elements non universal: Using full QCD field
 ⇒ Cannot be used for different heavy quark systems
 ⇒ No universal predictions
Remark on the Following Calculational Method

Outline of the Strategy

- Identify operators in order $1/m_b^n$
- Compute general decomposition of matrix element

Advantages

- Ordering preserved: Straight forward computation
 ⇒ Economical calculation, automatable
- Generalizable to arbitrarily high orders

Disadvantages

- Matrix elements non universal: Using full QCD field
 ⇒ Cannot be used for different heavy quark systems
 ⇒ No universal predictions
Remark on the Following Calculational Method

Outline of the Strategy
- Identify operators in order $1/m_b^n$
- Compute general decomposition of matrix element

Advantages
- Ordering preserved: Straight forward computation
 - Economical calculation, automatable
- Generalizable to arbitrarily high orders

Disadvantages
- Matrix elements non universal: Using full QCD field
 - Cannot be used for different heavy quark systems
 - No universal predictions
Starting Point

Differential Rate

\[d\Gamma = 16\pi G_F^2 |V_{cb}|^2 W_{\mu\nu} L^{\mu\nu} \, d\phi \]

- \(d\phi \): Phase-space
- \(L^{\mu\nu} \): Leptonic Tensor
- \(W_{\mu\nu} \): Hadronic Tensor

Leptonic Tensor

\[L^{\mu\nu} = 2 \left(p^{\mu}_e p^{\nu}_{\nu e} + p^{\nu}_e p^{\mu}_{\nu e} - g^{\mu\nu} p_e \cdot p_{\nu e} - i\epsilon^{\mu\nu\alpha\beta} p_{e\alpha} p_{\nu e\beta} \right) \]

Hadronic Part

\[W_{\mu\nu} = \frac{1}{2M_B} \sum_{X_c} \langle \bar{B} | J_{q,\nu}^\dagger | X_c \rangle \langle X_c | J_{q,\mu} | \bar{B} \rangle (2\pi)^3 \delta^4(p_B - (p_e + p_{\nu e} + p_{X_c})) \]
Starting Point

Differential Rate

\[
d\Gamma = 16\pi G_F^2 |V_{cb}|^2 W_{\mu\nu} L^{\mu\nu} \, d\phi
\]

- \(d\phi\): Phase-space
- \(L^{\mu\nu}\): Leptonic Tensor
- \(W_{\mu\nu}\): Hadronic Tensor

Leptonic Tensor

\[
L^{\mu\nu} = 2 \left(p_\mu p_\nu - p_\mu p_\nu + g^{\mu\nu} p_e \cdot p_{\nu_e} - i\epsilon^{\mu\nu\alpha\beta} p_{e\alpha} p_{\nu_e\beta} \right)
\]

Hadronic Part

\[
W_{\mu\nu} = \frac{1}{2M_B} \sum_{X_c} \langle \bar{B} | J_{q,\nu}^\dagger X_c \rangle \langle X_c | J_{q,\mu} | \bar{B} \rangle (2\pi)^3 \delta^4(p_B - (p_e + p_{\nu_e} + p_{X_c}))
\]
Starting Point

Differential Rate

\[d\Gamma = 16\pi G_F^2 |V_{cb}|^2 W_{\mu\nu} L^{\mu\nu} \, d\phi \]

- \(d\phi \): Phase-space
- \(L^{\mu\nu} \): Leptonic Tensor
- \(W_{\mu\nu} \): Hadronic Tensor

Leptonic Tensor

\[L^{\mu\nu} = 2 \left(p_\mu^e p_{\nu e}^\nu + p_\nu^e p_{\nu e}^\mu - g^{\mu\nu} p_e \cdot p_{\nu e} - i\epsilon^{\mu\nu\alpha\beta} p_e^\alpha p_{\nu e}^\beta \right) \]

Hadronic Part

\[W_{\mu\nu} = \frac{1}{2M_B} \sum_{X_c} \langle \bar{B} | J_{q,\nu}^+ | X_c \rangle \langle X_c | J_{q,\mu} | \bar{B} \rangle (2\pi)^3 \delta^4(p_B - (p_e + p_{\nu e} + p_{X_c})) \]
The Basic Idea to Calculate $W_{\mu\nu}$

- Starting point:
 Correlator of two hadronic currents

 $$i T_{\mu\nu} = \frac{1}{2M_B} \int d^4x \ e^{-ix(m_b v - q)}$$

 $$\times \langle B| \bar{b}_\nu(x) \Gamma^\dagger_\nu c(x) \bar{c}(0) \Gamma_\mu b_\nu(0)|B \rangle$$

- Optical theorem relates $W_{\mu\nu}$ to $T_{\mu\nu}$:

 $$-\frac{1}{\pi} \text{Im} \ T_{\mu\nu} = W_{\mu\nu}$$

Momentum Parametrization (HQET)

- Momentum B-meson: $P_B = M_B v$

 \Rightarrow Momentum of b-quark: $p_b = m_b v + k$ with $k \approx O(\Lambda_{\text{QCD}})$
The Basic Idea to Calculate $W_{\mu\nu}$

- Starting point:
 Correlator of two hadronic currents

 $$i T_{\mu\nu} = \frac{1}{2M_B} \int d^4 x \ e^{-i(x(m_b v - q))} \times \langle B| \bar{b}_\nu(x) \Gamma^\dagger \nu c(x) \bar{c}(0) \Gamma_\mu b_\nu(0)|B\rangle$$

- Optical theorem relates $W_{\mu\nu}$ to $T_{\mu\nu}$:

 $$-\frac{1}{\pi} \text{Im} \ T_{\mu\nu} = W_{\mu\nu}$$

Momentum Parametrization (HQET)

- Momentum B-meson: $P_B = M_B v$

 $$\Rightarrow$$
 Momentum of b-quark: $p_b = m_b v + k$ with $k \approx O(\Lambda_{QCD})$
Background Field Method

Parametrize Background Field Propagator

- Remove only large momentum: \(p_b = m_b v + k, \ b_v(x) = e^{im_b v \cdot x} b(x) \)
- Background field propagator with \(k \leftrightarrow iD \):

\[
iS_{BGF} = \frac{i}{m_b \gamma - \not{q} + i\not{D} - m_c}
\]

Operator Product Expansion

- HQE corresponds to expand \(S_{BGF} \) in small quantity \(i\not{D} \)

\[
S_{BGF} = \sum_{n=0} \frac{(-1)^n}{\not{Q} - m_c} \left(i\not{D} \frac{1}{\not{Q} - m_c} \right)^n
\]

\[
= \frac{1}{\not{Q} - m_c} - \frac{1}{\not{Q} - m_c} \left(i\not{D} \frac{1}{\not{Q} - m_c} \right) + \frac{1}{\not{Q} - m_c} \left(i\not{D} \frac{1}{\not{Q} - m_c} \right)^2 + \cdots
\]

\(\Rightarrow \) Keeps track on the ordering of the covariant derivatives
Background Field Method

Parametrize Background Field Propagator

- Remove only large momentum: \(p_b = m_b v + k, \quad b_v(x) = e^{i m_b v \cdot x} b(x) \)
- Background field propagator with \(k \leftrightarrow iD \):

\[
iS_{\text{BGF}} = \frac{i}{m_b \gamma - \not{q} + i \not{D} - m_c}
\]

Operator Product Expansion

- HQE corresponds to expand \(S_{\text{BGF}} \) in small quantity \(i \not{D} \)

\[
S_{\text{BGF}} = \sum_{n=0} (-1)^n \frac{1}{\not{Q} - m_c} \left(i \not{D} \frac{1}{\not{Q} - m_c} \right)^n \\
= \frac{1}{\not{Q} - m_c} - \frac{1}{\not{Q} - m_c} \left(i \not{D} \right) \frac{1}{\not{Q} - m_c} \\
+ \frac{1}{\not{Q} - m_c} \left(i \not{D} \right) \frac{1}{\not{Q} - m_c} \left(i \not{D} \right) \frac{1}{\not{Q} - m_c} + \cdots
\]

\[\Rightarrow\text{ Keeps track on the ordering of the covariant derivatives}\]
The Time-Ordered Product

\[2M_B \, T_{\mu\nu} = \langle B(p) | \bar{b}_\nu \gamma_\nu P_L S_{\text{BGF}} \gamma_\mu P_L b_\nu | B(p) \rangle \]

General Structure in each Order

- From the expansion we get a Dirac chain

\[S_{\text{BGF}}^{(n)} = (Q + m_c) \left[i\slashed{D} (Q + m_c) \right]^n \frac{1}{(Q^2 - m_c^2 + i\epsilon)^{n+1}} \]

→ "Trace-formulae": Non-perturbative input in Dimension \(n + 3 \)

\[\langle B(p) | \bar{b}_{\nu,\alpha} (iD_{\mu_1}) \cdots (iD_{\mu_n}) b_{\nu,\beta} | B(p) \rangle = \sum_i \Gamma^{(i)}_{\beta\alpha} A^{(i)}_{\mu_1 \mu_2 \cdots \mu_n} \]

- Start with highest dimension, evaluate recursively
- E.o.m. connect different orders in expansion

→ "Off-shellness" The imaginary part is given by

\[-\frac{1}{\pi} \, m \, \frac{1}{n!} = \frac{(-1)^n}{n!} (n + 1) \]

\[\delta^{(n)}(Q^2 - m_c^2) \]
The Time-Ordered Product

\[
2M_B \, T_{\mu\nu} = \langle B(p) | \bar{b}_\nu \gamma_\nu P_L S_{\text{BGF}} \gamma_\mu P_L b_\nu | B(p) \rangle
\]

General Structure in each Order

- From the expansion we get a Dirac chain
 \[
 S_{\text{BGF}}^{(n)} = (Q + m_c) \left[i\Phi (Q + m_c) \right]^n \frac{1}{(Q^2 - m_c^2 + i\epsilon)^{n+1}}
 \]
 \[
 \Rightarrow \text{“Trace-formulae”: Non-perturbative input in Dimension } n + 3
 \]

- \[
 \langle B(p) | \bar{b}_\nu, \alpha (iD_{\mu_1}) \ldots (iD_{\mu_n}) b_\nu, \beta | B(p) \rangle = \sum_i \hat{\Gamma}^{(i)}_{\beta\alpha} A^{(i)}_{\mu_1 \mu_2 \ldots \mu_n}
 \]
 - Start with highest dimension, evaluate recursively
 - E.o.m. connect different orders in expansion

- “Off-shellness” The imaginary part is given by
 \[
 -\frac{1}{\pi} \text{Im} \left\{ \frac{1}{(Q^2 - m_c^2 + i\epsilon)^{n+1}} \right\} = (-1)^n \frac{n!}{n} \delta^{(n)}(Q^2 - m_c^2)
 \]
The Time-Ordered Product

\[2M_B T_{\mu\nu} = \langle B(p) | \bar{b}_\nu \gamma_\nu P_L S_{\text{BGF}} \gamma_\mu P_L b_\nu | B(p) \rangle \]

General Structure in each Order

- From the expansion we get a Dirac chain

 \[S_{\text{BGF}}^{(n)} = (Q + m_c) \left[i\gamma_\mu (Q + m_c) \right]^n \frac{1}{(Q^2 - m_c^2 + i\epsilon)^{n+1}} \]

 \[\Rightarrow \text{“Trace-formulae”: Non-perturbative input in Dimension } n + 3 \]

 \[\langle B(p) | \bar{b}_{\nu,\alpha} (iD_{\mu_1}) \ldots (iD_{\mu_n}) b_{\nu,\beta} | B(p) \rangle = \sum_i \hat{\Gamma}_{i\beta\alpha}^{(i)} A_{\mu_1\mu_2\ldots\mu_n}^{(i)} \]

- Start with highest dimension, evaluate recursively
- E.o.m. connect different orders in expansion

 \[\Rightarrow \text{“Off-shellness” The imaginary part is given by} \]

 \[-\frac{1}{\pi} \text{Im} \frac{1}{(Q^2 - m_c^2 + i\epsilon)^{n+1}} = \frac{(-1)^n}{n!} \delta^{(n)}(Q^2 - m_c^2) \]
The Time-Ordered Product

\[2M_B T_{\mu\nu} = \langle B(p) | \bar{b}_\nu \gamma_\nu P_L S_{BGF} \gamma_\mu P_L b_\nu | B(p) \rangle \]

General Structure in each Order

- From the expansion we get a Dirac chain
 \[S_{BGF}^{(n)} = (Q + m_c) \left[i \bar{D} (Q + m_c) \right]^n \frac{1}{(Q^2 - m_c^2 + i\epsilon)^{n+1}} \]
 \[\Rightarrow \text{“Trace-formulae”: Non-perturbative input in Dimension } n + 3 \]
 \[\langle B(p) | \bar{b}_\nu,\alpha (iD_{\mu_1}) \cdots (iD_{\mu_n}) b_\nu,\beta | B(p) \rangle = \sum_i \hat{\Gamma}^{(i)}_{\beta\alpha} A^{(i)}_{\mu_1 \mu_2 \cdots \mu_n} \]
 - Start with highest dimension, evaluate recursively
 - E.o.m. connect different orders in expansion
 \[\Rightarrow \text{“Off-shellness” The imaginary part is given by} \]
 \[-\frac{1}{\pi} \text{Im} \frac{1}{(Q^2 - m_c^2 + i\epsilon)^{n+1}} = \frac{(-1)^n}{n!} \delta^{(n)}(Q^2 - m_c^2) \]
Subtlety in the $1/m_Q$ expansion

- Expansion in both heavy quark masses m_b and $m_c \approx \sqrt{m_b \Lambda}$
- Starting at leading order $\frac{\Lambda^3}{m_b^3} \left(\log \frac{m_c^2}{m_b^2} + \frac{\Lambda^2}{m_c^2} + \ldots \right)$
 - Leading to systematical effects
 - Computation and estimation of higher orders and these effects
- No $1/m_c$ effects for zero-gluon matrix elements
- Even number of covariant derivatives: Reparametrization invariance
Subtlety in the $1/m_Q$ expansion

- Expansion in both heavy quark masses m_b and $m_c \approx \sqrt{m_b \Lambda}$
- Starting at leading order $\frac{\Lambda^3}{m_b^3} \left(\log \frac{m_c^2}{m_b^2} + \frac{\Lambda^2}{m_c^2} + \ldots \right)$
 - Leading to systematical effects
 - Computation and estimation of higher orders and these effects
- No $1/m_c$ effects for zero-gluon matrix elements
 - Even number of covariant derivatives: Reparametrisation invariance
Subtlety in the $1/m_Q$ expansion

- Expansion in both heavy quark masses m_b and $m_c \approx \sqrt{m_b \Lambda}$
- Starting at leading order $\frac{\Lambda^3}{m_b^3} \left(\log \frac{m_c^2}{m_b^2} + \frac{\Lambda^2}{m_c^2} + \ldots \right)$
 - Leading to systematical effects
 - Computation and estimation of higher orders and these effects
- No $1/m_c$ effects for zero-gluon matrix elements
 - Even number of covariant derivatives: Reparametrization invariance
Non-Perturbative Parameter

To Order $1/m_b^2$

\[
2M_B \hat{\mu}_\pi^2 = -\langle B(p) | \bar{b}_v (iD)^2 b_v | B(p) \rangle \\
\hat{=} \langle \mathbf{p}^2 \rangle
\]

\[
2M_B \hat{\mu}_G^2 = 1/2 \langle B(p) | \bar{b}_v [(iD_\mu), (iD_\nu)] (-i\sigma^{\mu\nu}) b_v | B(p) \rangle \\
\hat{=} \langle \mathbf{s} \cdot \mathbf{B} \rangle
\]

To Order $1/m_b^3$

\[
2M_B \hat{\rho}_D^3 = 1/2 \langle B(p) | \bar{b}_v \left[(iD_\mu), \left[(iv \cdot D), (iD^\mu)\right]\right] b_v | B(p) \rangle \\
\hat{=} \langle \nabla \cdot \mathbf{E} \rangle
\]

\[
2M_B \hat{\rho}_{LS}^3 = 1/2 \langle B(p) | \bar{b}_v \left\{ (iD_\mu), \left[(iv \cdot D), (iD_\nu)\right]\right\} (-i\sigma^{\mu\nu}) b_v | B(p) \rangle \\
\hat{=} \langle \mathbf{s} \cdot \nabla \times \mathbf{B} \rangle
\]
Non-Perturbative Parameter

To Order $1/m_b^2$

\[
2M_B \hat{\mu}_2^2 = -\langle B(p) | \bar{b}_\nu (iD)^2 b_\nu | B(p) \rangle \\
\hat{=} \langle p^2 \rangle \\
2M_B \hat{\mu}_G^2 = 1/2 \langle B(p) | \bar{b}_\nu [(iD_\mu), (iD_\nu)] (-i\sigma^{\mu\nu}) b_\nu | B(p) \rangle \\
\hat{=} \langle s \cdot B \rangle
\]

To Order $1/m_b^3$

\[
2M_B \hat{\rho}_D^3 = 1/2 \langle B(p) | \bar{b}_\nu \left[(iD_\mu), [(iv \cdot D), (iD_\mu)] \right] b_\nu | B(p) \rangle \\
\hat{=} \langle \nabla \cdot E \rangle \\
2M_B \hat{\rho}_{LS}^3 = 1/2 \langle B(p) | \bar{b}_\nu \left\{ (iD_\mu), [(iv \cdot D), (iD_\nu)] \right\} (-i\sigma^{\mu\nu}) b_\nu | B(p) \rangle \\
\hat{=} \langle s \cdot \nabla \times B \rangle
\]
Higher Orders

- **Dimension - 7: \(1/m_b^4 \)**
 - 4 Spin independent parameter
 - 5 Spin dependent parameters

- **Dimension - 8: \(1/m_b^5 \)**
 - **Proliferation of parameters**
 - 8 Spin independent parameter
 - 10 Spin dependent parameter

Problem in Experiment
- All parameters have to be extracted from correlated measurements
- Not reliably possible
- Estimate parameters and use this to estimate influence
Higher Orders

Dimension - 7: $1/m_b^4$
- 4 Spin independent parameter
- 5 Spin dependent parameters

Dimension - 8: $1/m_b^5$
- Proliferation of parameters
- 8 Spin independent parameter
- 10 Spin dependent parameter

Problem in Experiment
- All parameters have to be extracted from correlated measurements
 ⇒ Not reliably possible
 ⇒ Estimate parameters and use this to estimate influence
Higher Orders

Dimension - 7: $1/m_b^4$
- 4 Spin independent parameter
- 5 Spin dependent parameters

Dimension - 8: $1/m_b^5$
- Proliferation of parameters
- 8 Spin independent parameter
- 10 Spin dependent parameter

Problem in Experiment
- All parameters have to be extracted from correlated measurements
 ⇒ Not reliably possible
 ⇒ Estimate parameters and use this to estimate influence
Higher Orders

Dimension - 7: $1/m_b^4$
- 4 Spin independent parameter
- 5 Spin dependent parameters

Dimension - 8: $1/m_b^5$
- **Proliferation of parameters**
- 8 Spin independent parameter
- 10 Spin dependent parameter

Problem in Experiment
- All parameters have to be extracted from correlated measurements
 - Not reliably possible
 - Estimate parameters and use this to estimate influence
Factorization Ansatz

Ansatz

- Factorization formulae $|n\rangle$: $B^{(*)}$ states, Q heavy static quark

$$
\langle \bar{B} | \bar{b} \left[(iD_{\mu_1}) \ldots (iD_{\mu_k}) \right] \left[(iD_{\mu_{k+1}}) \ldots (iD_{\mu_n}) \right] \frac{1 + \gamma^\nu}{2} \Gamma b | \bar{B} \rangle
= \sum_n \langle \bar{B} | \bar{b} (iD_{\mu_1}) \ldots (iD_{\mu_k}) Q | n \rangle \cdot \langle n | \bar{Q} (iD_{\mu_{k+1}}) \ldots (iD_{\mu_n}) \Gamma b | \bar{B} \rangle
$$

Subtlety: Treatment of Timelike Components

- Time derivative links different orders in $1/m_b$
- Taking the matrix element of the operator

$$i \partial_0 \langle n | \bar{Q} C b(x) | \bar{B} \rangle = -(E_n - M_B) \langle n | \bar{Q} C b(x) | \bar{B} \rangle$$

$$\Rightarrow$$ Time derivative $iv \cdot D$ corresponds to energy difference

$$\bar{\epsilon} = (M_n - m_Q) - (M_B - m_b) \approx 0.4 \text{ GeV}$$

- Finite m_b and assume a generic $\bar{\epsilon}$
Factorization Ansatz

Ansatz

- Factorization formulae $|n\rangle$: $B^{(*)}$ states, Q heavy static quark

$$
\langle \bar{B} | b [(iD_{\mu_1}) \ldots (iD_{\mu_k})] [(iD_{\mu_{k+1}}) \ldots (iD_{\mu_n})] \frac{1 + \gamma}{2} \Gamma b | \bar{B} \rangle
$$

$$
= \sum_n \langle \bar{B} | b (iD_{\mu_1}) \ldots (iD_{\mu_k}) Q | n \rangle \cdot \langle n | \bar{Q} (iD_{\mu_{k+1}}) \ldots (iD_{\mu_n}) \Gamma b | \bar{B} \rangle
$$

Subtlety: Treatment of Timelike Components

- Time derivative links different orders in $1/m_b$

- Taking the matrix element of the operator

$$
i \partial_0 \langle n | \bar{Q} Cb(x) | \bar{B} \rangle = -(E_n - M_B) \langle n | \bar{Q} Cb(x) | \bar{B} \rangle
$$

\Rightarrow Time derivative $iv \cdot D$ corresponds to energy difference

$$
\bar{\epsilon} \equiv (M_n - m_Q) - (M_B - m_b) \approx 0.4 \text{ GeV}
$$

- Finite m_b and assume a generic $\bar{\epsilon}$
Factorization Ansatz

Ansatz

- Factorization formulae $|n\rangle$: $B^{(*)}$ states, Q heavy static quark

$$
\langle \bar{B} | b \left[(iD_{\mu_1}) \ldots (iD_{\mu_k}) \right] \left[(iD_{\mu_{k+1}}) \ldots (iD_{\mu_n}) \right] \frac{1 + \gamma}{2} \Gamma b | \bar{B} \rangle \\
= \sum_n \langle \bar{B} | b \left(iD_{\mu_1} \right) \ldots (iD_{\mu_k}) Q | n \rangle \cdot \langle n | \bar{Q} \left(iD_{\mu_{k+1}} \right) \ldots (iD_{\mu_n}) \Gamma b | \bar{B} \rangle
$$

Subtlety: Treatment of Timelike Components

- Time derivative links different orders in $1/m_b$
- Taking the matrix element of the operator

$$
i \partial_0 \langle n | \bar{Q} Cb(x) | \bar{B} \rangle = -(E_n - M_B) \langle n | \bar{Q} Cb(x) | \bar{B} \rangle
$$

⇒ Time derivative $iv \cdot D$ corresponds to energy difference

$$
\bar{\epsilon} \equiv (M_n - m_Q) - (M_B - m_b) \approx 0.4 \text{ GeV}
$$

- Finite m_b and assume a generic $\bar{\epsilon}$
Numerical Approximation

Lowest State Saturation Ansatz

- Decomposition mostly saturated by lowest state
 \[\langle \bar{B}|\bar{b}_v iD_j iD_k iD_l iD_m \Gamma b_v |\bar{B}\rangle = \langle \bar{B}|\bar{b}_v iD_j iD_k Q|n_0\rangle \langle n_0|\bar{Q} iD_l iD_m \Gamma b_v |\bar{B}\rangle \]

- Time derivative contributes only to
 \[\langle \bar{B}|\bar{b}_v iD_j(iv \cdot D)^m iD_k \Gamma b_v |\bar{B}\rangle = (-\bar{\epsilon})^m \langle \bar{B}|\bar{b}_v iD_j iD_k Q|n_0\rangle \]

- And in dimension six parameters

Comments

- All higher order terms expressed through
 \[\mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \text{ and } \bar{\epsilon} \]

- Parameters scale as \(\frac{\Lambda^n}{m_b^n} \) as expected ✓
Numerical Approximation

Lowest State Saturation Ansatz

- Decomposition mostly saturated by lowest state
 \[
 \langle \bar{B} | b_v iD_j iD_k iD_l iD_m \Gamma b_v | \bar{B} \rangle = \langle \bar{B} | b_v iD_j iD_k Q | n_0 \rangle \langle n_0 | \bar{Q} iD_l iD_m \Gamma b_v | \bar{B} \rangle
 \]

- Time derivative contributes only to
 \[
 \langle \bar{B} | b_v iD_j (iv \cdot D)^m iD_k \Gamma b_v | \bar{B} \rangle = (-\bar{\epsilon})^m \langle \bar{B} | b_v iD_j iD_k Q | n_0 \rangle
 \]

- And in dimension six parameters

Comments

- All higher order terms expressed through \(\mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3 \), and \(\bar{\epsilon} \)

- Parameters scale as \(\frac{\Lambda_n}{m_b^n} \) as expected ✓
Numerical Approximation

Lowest State Saturation Ansatz

- Decomposition mostly saturated by lowest state
 \[\langle \bar{B} | \bar{b}_v iD_j iD_k iD_l iD_m \Gamma b_v | \bar{B} \rangle = \langle \bar{B} | \bar{b}_v iD_j iD_k Q | n_0 \rangle \langle n_0 | \bar{Q} iD_l iD_m \Gamma b_v | \bar{B} \rangle \]
- Time derivative contributes only to
 \[\langle \bar{B} | \bar{b}_v iD_j (iv \cdot D)^m iD_k \Gamma b_v | \bar{B} \rangle = (-\bar{\epsilon})^m \langle \bar{B} | \bar{b}_v iD_j iD_k Q | n_0 \rangle \]
- And in dimension six parameters

Comments

- All higher order terms expressed through
 \[\mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \text{ and } \bar{\epsilon} \]
- Parameters scale as \(\frac{\Lambda^n}{m_b^n} \) as expected √
Measurement Procedure I

Extraction of Heavy Quark Parameters

- Use normalization to cancel out prefactors
- Need completely integrated hadronic phase-space
- Sufficient number of observables for all different parameters

Definition of Observables

- Electron energy spectrum
 \[\text{BR}(E_e) = \frac{1}{\int \frac{d\Gamma}{dE_e} dE_e} \]

- Moments of electron energy and hadronic invariant mass
 \[\langle E^n_e M^m_X \rangle (E_{\text{cut}}) = \frac{1}{\int_{E_e > E_{\text{cut}}} \frac{d^2\Gamma}{dE_e dM_X} dE_e dM_X} \int_{E_e > E_{\text{cut}}} E^n_e M^m_X \frac{d^2\Gamma}{dE_e dM_X} dE_e dM_X \]
Measurement Procedure I

Extraction of Heavy Quark Parameters

- Use normalization to cancel out prefactors
- Need completely integrated hadronic phase-space
- Sufficient number of observables for all different parameters

Definition of Observables

1. Electron energy spectrum

\[
\text{BR}(E_e) = \frac{1}{\int \frac{d\Gamma}{dE_e} dE_E dE_e} \frac{d\Gamma}{dE_e}
\]

2. Moments of electron energy and hadronic invariant mass

\[
\langle E_e^n M_X^m \rangle (E_{\text{cut}}) = \frac{1}{\int_{E_e > E_{\text{cut}}} \frac{d^2\Gamma}{dE_e dM_X} dE_e dM_X} \int_{E_e > E_{\text{cut}}} E_e^n M_X^m \frac{d^2\Gamma}{dE_e dM_X} dE_e dM_X
\]
Measurement Procedure I

Extraction of Heavy Quark Parameters
- Use normalization to cancel out prefactors
- Need completely integrated hadronic phase-space
- **Sufficient number of observables for all different parameters**

Definition of Observables

1. **Electron energy spectrum**

 \[
 \text{BR}(E_e) = \frac{1}{\int \frac{d\Gamma}{dE_e} dE_E \, dE_e} \, d\Gamma
 \]

2. **Moments of electron energy and hadronic invariant mass**

 \[
 \langle E_e^n M_X^m \rangle (E_{cut}) = \frac{1}{\int_{E_e > E_{cut}} \frac{d^2\Gamma}{dE_e dM_X} \, dE_e dM_X} \int_{E_e > E_{cut}} E_e^n M_X^m \, \frac{d^2\Gamma}{dE_e dM_X} \, dE_e dM_X
 \]
Extraction of V_{cb}

- Heavy Quark parameters known from fit to moments and spectra
- Normalisation to partial branching fraction determines $|V_{cb}|$

$$
\Gamma = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} f(m_c, m_b, \mu_\pi^2, \ldots)
$$

Remarks

- E_{cut} restricts phase-space
 - Reduces validity of HQE
- Highly correlated measurement
 - Limits reasonable order of non-perturbative expansion
Extraction of V_{cb}

- Heavy Quark parameters known from fit to moments and spectra
- Normalisation to partial branching fraction determines $|V_{cb}|$

$$
\Gamma = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192 \pi^3} f(m_c, m_b, \mu^2, \ldots)
$$

Remarks

- E_{cut} restricts phase-space
 - Reduces validity of HQE
- Highly correlated measurement
 - Limits reasonable order of non-perturbative expansion
Measurement Procedure II

Extraction of V_{cb}

- Heavy Quark parameters known from fit to moments and spectra
- Normalisation to partial branching fraction determines $|V_{cb}|$

$$
\Gamma = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} f(m_c, m_b, \mu_\pi, \ldots)
$$

Remarks

- E_{cut} restricts phase-space
 - Reduces validity of HQE
- Highly correlated measurement
 - Limits reasonable order of non-perturbative expansion
Influence of Higher Orders

Reminder on Facts

- Optical theorem \Rightarrow Higher moments sensitive to higher orders
- Experimental measurement fixed
- \Rightarrow Include higher orders will shift heavy quark parameters of lower orders
 - Influence of lower cut on electron energy
 \Rightarrow Up to which scale is the result still valid
 \Rightarrow Higher orders should improve convergence

Interested in influence on extracting $|V_{cb}|$
Influence of Higher Orders

Reminder on Facts

- Optical theorem \Rightarrow Higher moments sensitive to higher orders
- Experimental measurement fixed
 \Rightarrow Include higher orders will shift heavy quark parameters of lower orders
- Influence of lower cut on electron energy
 \Rightarrow Up to which scale is the result still valid
- Higher orders should improve convergence

Interested in influence on extracting $|V_{cb}|$
Influence of Higher Orders

Reminder on Facts

- Optical theorem \Rightarrow Higher moments sensitive to higher orders
- Experimental measurement fixed
\Rightarrow Include higher orders will shift heavy quark parameters of lower orders
- Influence of lower cut on electron energy
\Rightarrow Up to which scale is the result still valid
\Rightarrow Higher orders should improve convergence

Interested in influence on extracting $|V_{cb}|$
Generic Effects

Direct effect

- Additional terms in branching ratio
- \(\implies \) Change value of \(|V_{cb}|\) directly

Indirect Effect

- Use estimate of higher-order parameters
- Value fixed by moment \(\mathcal{M}^{(6)} \) up to dimension six
- Compensate effect by change of heavy quark parameter in \(\mathcal{M}^{(6)} \)

\[
\delta m_b = - \frac{\delta \mathcal{M}^{(8)}}{\partial \mathcal{M}^{(6)}}, \quad \delta \mu^2 = - \frac{\delta \mathcal{M}^{(8)}}{\partial \mu^4}, \quad \delta \rho^3_D = - \frac{\delta \mathcal{M}^{(8)}}{\partial \rho^3_D},
\]

\(\implies \) Results in indirect change of \(|V_{cb}|\)

\[
\frac{\delta |V_{cb}|}{|V_{cb}|} = - \frac{1}{2} \frac{1}{\Gamma_{sl}} \frac{\partial \Gamma_{sl}}{\partial \text{HQP}} \delta \text{HQP}
\]
Generic Effects

Direct effect

- Additional terms in branching ratio
 \[\Rightarrow \text{Change value of } |V_{cb}| \text{ directly} \]

Indirect Effect

- Use estimate of higher-order parameters
- Value fixed by moment \(\mathcal{M}^{(6)} \) up to dimension six
 - Compensate effect by change of heavy quark parameter in \(\mathcal{M}^{(6)} \)
 \[
 \delta m_b = - \frac{\delta \mathcal{M}^{(8)}}{\partial \mathcal{M}^{(6)} / \partial m_b}, \quad \delta \mu_\pi^2 = - \frac{\delta \mathcal{M}^{(8)}}{\partial \mathcal{M}^{(6)} / \partial \mu_\pi^2}, \quad \delta \rho_D^3 = - \frac{\delta \mathcal{M}^{(8)}}{\partial \mathcal{M}^{(6)} / \partial \rho_D^3}
 \]
 \[\Rightarrow \text{Results in indirect change of } |V_{cb}| \]
 \[
 \frac{\delta |V_{cb}|}{|V_{cb}|} = - \frac{1}{2 \frac{\partial \Gamma_{sl}}{\partial \text{HQP}}} \frac{\partial \Gamma_{sl}}{\partial \text{HQP}} \delta \text{HQP}
 \]
Generic Effects

Direct effect
- Additional terms in branching ratio
-⇒ Change value of $|V_{cb}|$ directly

Indirect Effect
- Use estimate of higher-order parameters
- Value fixed by moment $\mathcal{M}^{(6)}$ up to dimension six
- Compensate effect by change of heavy quark parameter in $\mathcal{M}^{(6)}$

$$
\delta m_b = - \frac{\delta \mathcal{M}^{(8)}}{\partial \mathcal{M}^{(6)}} m_b,
\delta \mu_\pi^2 = - \frac{\delta \mathcal{M}^{(8)}}{\partial \mu_\pi^2},
\delta \rho_D^3 = - \frac{\delta \mathcal{M}^{(8)}}{\partial \rho_D^3}\n$$

⇒ Results in indirect change of $|V_{cb}|$

$$
\frac{\delta |V_{cb}|}{|V_{cb}|} = - \frac{1}{2} \frac{1}{\Gamma_{sl}} \frac{\partial \Gamma_{sl}}{\partial \text{HQP}} \delta \text{HQP}
$$
Generic Effects

Direct effect
- Additional terms in branching ratio
 ⇒ Change value of $|V_{cb}|$ directly

Indirect Effect
- Use estimate of higher-order parameters
- Value fixed by moment $M^{(6)}$ up to dimension six
- Compensate effect by change of heavy quark parameter in $M^{(6)}$

$$\delta m_b = - \frac{\delta M^{(8)}}{\partial M^{(6)} \partial m_b}, \quad \delta \mu^2_\pi = - \frac{\delta M^{(8)}}{\partial M^{(6)} \partial \mu^2_\pi}, \quad \delta \rho^3_D = - \frac{\delta M^{(8)}}{\partial M^{(6)} \partial \rho^3_D}$$

⇒ Results in indirect change of $|V_{cb}|$

$$\frac{\delta |V_{cb}|}{|V_{cb}|} = - \frac{1}{2} \frac{1}{\Gamma_{sl}} \frac{\partial \Gamma_{sl}}{\partial \text{HQP}} \delta \text{HQP}$$
Direct Effect on Branching Fraction

Naive Assumption

- Definition: $\delta \Gamma_{1/m^k} = \Gamma_{1/m^k} - \Gamma_{1/m^{k-1}}$ and Γ_{parton} leading order

\[
\frac{\delta \Gamma_{1/m^2}}{\Gamma_{\text{parton}}} = -4.3\%
\]
\[
\frac{\delta \Gamma_{1/m^3}}{\Gamma_{\text{parton}}} = -3.0\%
\]
\[
\frac{\delta \Gamma_{1/m^4}}{\Gamma_{\text{parton}}} = 0.75\%
\]
\[
\frac{\delta \Gamma_{1/m^5}}{\Gamma_{\text{parton}}} = 0.6\%
\]
\[
\frac{\delta \Gamma^{IC}}{\Gamma_{\text{parton}}} = 0.7\%
\]

Implication for $|V_{cb}|$

\[
\frac{\delta \Gamma_{1/m^4} + \delta \Gamma_{1/m^5}}{\Gamma_{\text{parton}}} \simeq 1.3\%
\]

\implies Expect direct 0.65% reduction of $|V_{cb}|$
Direct Effect on Branching Fraction

Naive Assumption

- Definition: \(\delta \Gamma_{1/m^k} = \Gamma_{1/m^k} - \Gamma_{1/m^{k-1}} \) and \(\Gamma_{\text{parton}} \) leading order

\[
\begin{align*}
\frac{\delta \Gamma_{1/m^2}}{\Gamma_{\text{parton}}} & = -4.3\% \\
\frac{\delta \Gamma_{1/m^3}}{\Gamma_{\text{parton}}} & = -3.0\% \\
\frac{\delta \Gamma_{1/m^4}}{\Gamma_{\text{parton}}} & = 0.75\% \\
\frac{\delta \Gamma_{1/m^5}}{\Gamma_{\text{parton}}} & = 0.6\% \\
\frac{\delta \Gamma^{\text{IC}}}{\Gamma_{\text{parton}}} & = 0.7\%
\end{align*}
\]

Implication for \(|V_{cb}| \)

\[
\frac{\delta \Gamma_{1/m^4} + \delta \Gamma_{1/m^5}}{\Gamma_{\text{parton}}} \simeq 1.3\%
\]

\(\Rightarrow \) Expect direct 0.65\% reduction of \(|V_{cb}| \)
Indirect Effect on V_{cb} from Selected Moments

Results for $\langle E_e \rangle$

$$\delta m_b = -33 \text{ MeV}, \quad \delta \mu_\pi^2 = -0.39 \text{ GeV}^2, \quad \delta \rho_D^3 = 0.15 \text{ GeV}^3$$

$$\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.022 \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.005 \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.014$$

Results for $\langle M_X^2 \rangle$

$$\delta m_b = -17 \text{ MeV}, \quad \delta \mu_\pi^2 = -0.12 \text{ GeV}^2, \quad \delta \rho_D^3 = 0.086 \text{ GeV}^3$$

$$\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.011 \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.0015 \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.008$$

Combining everything we expect a net increase of $|V_{cb}|$

$$\frac{\delta |V_{cb}|}{|V_{cb}|} \approx + (0.3 \div 0.5)\%$$
Indirect Effect on V_{cb} from Selected Moments

Results for $\langle E_e \rangle$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δm_b</td>
<td>-33 MeV</td>
</tr>
<tr>
<td>$\delta \mu_\pi^2$</td>
<td>-0.39 GeV2</td>
</tr>
<tr>
<td>$\delta \rho_D^3$</td>
<td>0.15 GeV3</td>
</tr>
</tbody>
</table>

$$
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.022
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.005
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.014
$$

Results for $\langle M_X^2 \rangle$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δm_b</td>
<td>-17 MeV</td>
</tr>
<tr>
<td>$\delta \mu_\pi^2$</td>
<td>-0.12 GeV2</td>
</tr>
<tr>
<td>$\delta \rho_D^3$</td>
<td>0.086 GeV3</td>
</tr>
</tbody>
</table>

$$
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.011
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.0015
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.008
$$

- Combining everything we expect a net increase of $|V_{cb}|$

$$
\frac{\delta |V_{cb}|}{|V_{cb}|} \approx +\left(0.3 \div 0.5\right)\%
$$
Indirect Effect on V_{cb} from Selected Moments

Results for $\langle E_e \rangle$

\[
\delta m_b = -33 \text{ MeV}, \quad \delta \mu_\pi^2 = -0.39 \text{ GeV}^2, \quad \delta \rho_D^3 = 0.15 \text{ GeV}^3
\]

\[
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.022
\]

\[
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.005
\]

\[
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.014
\]

Results for $\langle M_X^2 \rangle$

\[
\delta m_b = -17 \text{ MeV}, \quad \delta \mu_\pi^2 = -0.12 \text{ GeV}^2, \quad \delta \rho_D^3 = 0.086 \text{ GeV}^3
\]

\[
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.011
\]

\[
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.0015
\]

\[
\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.008
\]

- Combining everything we expect a net increase of $|V_{cb}|$

\[
\frac{\delta |V_{cb}|}{|V_{cb}|} \approx +\left(0.3 \div 0.5\right)\%
\]
Effect of Electron Energy Cut

Legend of different order Contributions

- Blue: $1/m_b^2$
- Green: $1/m_b^3$
- Red: $1/m_b^4$
- Magenta: $1/m_b^5$
Effect of Electron Energy Cut

Legend of different order Contributions

- Blue: $1/m_b^2$
- Green: $1/m_b^3$
- Red: $1/m_b^4$
- Magenta: $1/m_b^5$
Hadronic Tensor for “IC”

Starting Point

\[W_{\mu\nu} = \frac{1}{2M_B} \sum_{X_c} \langle \bar{B} | J_{q,\nu}^\dagger(x) | X_c \rangle \langle X_c | J_{q,\mu}(0) | \bar{B} \rangle (2\pi)^3 \delta^4(p_B - q - p_{X_c}) \]

Rewrite for “Intrinsic Charm” Contribution

- Use translational invariance
 \[\Rightarrow 2M_B W_{\mu\nu} = \frac{1}{2\pi} \int d^4x \ e^{i(m_b v - q) \cdot x} \langle \bar{B} | J_{q,\nu}^\dagger(x) J_{q,\mu}(0) | \bar{B} \rangle \]

- Expand in local operators
 \[2M_B W_{\mu\nu}^{IC} = (2\pi)^3 \delta^4(q - m_b v) \langle \bar{B}(p) | (\bar{b}_v \gamma_{\nu} P_L c) (\bar{c} \gamma_{\mu} P_L b_v) | \bar{B}(p) \rangle \]
 \[+ (2\pi)^3 \left(\frac{\partial}{\partial q_\alpha} \delta^4(q - m_b v) \right) \langle \bar{B}(p) | (i\partial_\alpha \bar{b}_v \gamma_{\nu} P_L c)(\bar{c} \gamma_{\mu} P_L b_v) | \bar{B}(p) \rangle \]
 \[+ \ldots \]
Hadronic Tensor for “IC”

Starting Point

\[W_{\mu\nu} = \frac{1}{2M_B} \sum_{X_c} \langle \bar{B}|J_{q,\nu}^\dagger(x)|X_c\rangle \langle X_c|J_{q,\mu}(0)|\bar{B}\rangle (2\pi)^3 \delta^4(p_B - q - p_{X_c}) \]

Rewrite for “Intrinsic Charm” Contribution

- Use translational invariance

\[\Rightarrow \quad 2M_B W_{\mu\nu} = \frac{1}{2\pi} \int d^4x \, e^{i(m_b v - q) \cdot x} \langle \bar{B}|J_{q,\nu}^\dagger(x)J_{q,\mu}(0)|\bar{B}\rangle \]

- Expand in local operators

\[
2M_B \, W^{IC}_{\mu\nu} = (2\pi)^3 \delta^4(q - m_b v) \langle \bar{B}(p)|(\bar{b}_v \gamma_\nu P_L c)(\bar{c} \gamma_\mu P_L b_v)|\bar{B}(p)\rangle \\
+ (2\pi)^3 \left(\frac{\partial}{\partial q_\alpha} \delta^4(q - m_b v) \right) \langle \bar{B}(p)|(i\partial_\alpha \bar{b}_v \gamma_\nu P_L c)(\bar{c} \gamma_\mu P_L b_v)|\bar{B}(p)\rangle \\
+ \ldots
\]
Naive Differential Rate for “IC” Contribution

Differential Rate

- Decompose IC operator in scalar operators T_j

\[
\frac{d^2 \Gamma^{IC}}{dm_X^2 \ dy} = \frac{G_F^2 m_b^5}{24 \pi^3} |V_{cb}|^2 \left(-3 \frac{T_1(m_b)}{m_b^3} \right) \delta(m_X^2) \delta(1 - y)
\]

\[
\frac{d \Gamma^{IC}}{dy} = \frac{G_F^2 m_b^5}{24 \pi^3} |V_{cb}|^2 \left(-3 \frac{T_1(m_b)}{m_b^3} \right) \delta(1 - y)
\]

Problems

- Double-counting
- Energy conservation: $m_b + 2m_c + \Delta E_{soft} > M_B$

⇒ Need proper definition of effective theory
Naive Differential Rate for “IC” Contribution

Differential Rate

- Decompose IC operator in scalar operators T_j

\[
\frac{d^2\Gamma^{IC}}{dm_X^2 \, dy} = \frac{G_F^2 m_b^5}{24\pi^3} |V_{cb}|^2 \frac{-3}{m_b^3} T_1(m_b) \delta(m_X^2) \delta(1 - y)
\]

\[
\frac{d\Gamma^{IC}}{dy} = \frac{G_F^2 m_b^5}{24\pi^3} |V_{cb}|^2 \frac{-3}{m_b^3} T_1(m_b) \delta(1 - y)
\]

Problems

- Double-counting
- Energy conservation: $m_b + 2m_c + \Delta E_{soft} > M_B$
 \[\Rightarrow\] Need proper definition of effective theory
Setup of the Effective Theory

First Step

- Evolve down from M_W to m_b and integrate out b-quark
 - HQET for b-quark
 - It remains as a static colour source
 - Product of the two $b \rightarrow c$ currents matches onto a set of local operators at $\mu \approx m_b$
 - Charm-quark still a dynamical degree of freedom

Second Step for Charm-Quark

- Evolve down from m_b to m_c
- Consider different points of view: Integrate out c-quark if possible
 - Charm-quark remains as a static source in charm-quark operators
- Calculate proper matching conditions for all operators
Setup of the Effective Theory

First Step
- Evolve down from M_W to m_b and integrate out b-quark
 $$\Rightarrow$$ HQET for b-quark
 - It remains as a static colour source
 - Product of the two $b \rightarrow c$ currents matches onto a set of local operators at $\mu \approx m_b$
 - Charm-quark still a dynamical degree of freedom

Second Step for Charm-Quark
- Evolve down from m_b to m_c
- Consider different points of view: Integrate out c-quark if possible
 $$\Rightarrow$$ Charm-quark remains as a static source in charm-quark operators
 - Calculate proper matching conditions for all operators
Scenarios

Scenario I

- Consider charm-quark as heavy
 \[m_b \sim m_c \gg \Lambda_{\text{QCD}} \]

Scenario II

- Consider charm-quark as semi-heavy
 \[m_b \gg m_c \gg \Lambda_{\text{QCD}} \]

Scenario III

- Consider charm-quark as light
 \[m_b \gg m_c \gg \Lambda_{\text{QCD}} \]
Scenarios

Scenario I
- Consider charm-quark as heavy
 \[m_b \sim m_c \gg \Lambda_{\text{QCD}} \]

Scenario II
- Consider charm-quark as semi-heavy
 \[m_b \gg m_c \gg \Lambda_{\text{QCD}} \]

Scenario III
- Consider charm-quark as light
 \[m_b \gg m_c \gg \Lambda_{\text{QCD}} \]
Scenarios

Scenario I
- Consider charm-quark as heavy
 \[m_b \sim m_c \gg \Lambda_{\text{QCD}} \]

Scenario II
- Consider charm-quark as semi-heavy
 \[m_b \gg m_c \gg \Lambda_{\text{QCD}} \]

Scenario III
- Consider charm-quark as light
 \[m_b \gg m_c \gtrsim \Lambda_{\text{QCD}} \]
Scenario I: $m_b \sim m_c \gg \Lambda_{\text{QCD}}$

Calculable Part

- Integrate out (hard) quantum fluctuations with virtuality of $\mathcal{O}(m_b, m_c)$

 \Rightarrow Only light-degrees of freedom remain:
 - light quarks
 - gluons
 - quasi-static b-quark field in HQET

- Short-distance matching coefficients and phase space integrals are functions of fixed ratio $\rho = m_c^2 / m_b^2$

Non-Perturbative Part

- At $\mu < m_c$: Operators with charm-quark do not appear in a standard renormalization scheme like e.g. $\overline{\text{MS}}$

- They correspond to $\langle \bar{B} | \bar{b}_v \ldots c_{\text{static}} \bar{c}_{\text{static}} \ldots b_v | \bar{B} \rangle \equiv 0$

- Matches to zero because of $m_b + 2m_c + \Delta E_{\text{soft}} > m_B$
Scenario 1: $m_b \sim m_c \gg \Lambda_{\text{QCD}}$

Calculable Part

- Integrate out (hard) quantum fluctuations with virtuality of $\mathcal{O}(m_{b,c})$
- Only light-degrees of freedom remain:
 - light quarks
 - gluons
 - quasi-static b-quark field in HQET
- Short-distance matching coefficients and phase space integrals are functions of fixed ratio $\rho = m_c^2/m_b^2$

Non-Perturbative Part

- At $\mu < m_c$: Operators with charm-quark do not appear in a standard renormalization scheme like e.g. $\overline{\text{MS}}$
- They correspond to $\langle \bar{B} | \bar{b}_v \ldots c_{\text{static}} \bar{c}_{\text{static}} \ldots b_v | \bar{B} \rangle \equiv 0$
- Matches to zero because of $m_b + 2m_c + \Delta E_{\text{soft}} > m_B$
Scenario II: \(m_b \gg m_c \gg \Lambda_{\text{QCD}} \)

- First step: Match at high scale \(\mu \sim m_b \)
 - Charm still dynamical and “intrinsic-charm” operators appear in the OPE
- Next step: Use RGE to scale down to semi-hard scale \(\mu_{\text{sh}} \sim m_c \)
 - Integrate out charm-quark and match “intrinsic-charm” operators onto local operators built from light fields as before

2 matching steps

\[
\begin{align*}
\mu &= m_b \\
\mu &= m_c \\
\mu &= \Lambda_{\text{QCD}}
\end{align*}
\]

charm dynamical
charm quasi-static

Difference to Scenario I

- Resum logarithmic terms \(\ln m_c/m_b \) into short-distance coefficient functions
- Expand analytic terms in powers of \(m_c/m_b \sim \sqrt{\Lambda_{\text{QCD}}/m_b} \sim 0.3 \)

\(\Rightarrow \) Reproduces Scenario I
Scenario II: $m_b \gg m_c \gg \Lambda_{QCD}$

- First step: Match at high scale $\mu \sim m_b$
 - Charm still dynamical and “intrinsic-charm” operators appear in the OPE
- Next step: Use RGE to scale down to semi-hard scale $\mu_{sh} \sim m_c$
 - Integrate out charm-quark and match “intrinsic-charm” operators onto local operators built from light fields as before
- 2 matching steps
 - $\mu = m_b$
 - Charm dynamical
 - $\mu = m_c$
 - Charm quasi-static
 - $\mu = \Lambda_{QCD}$

Difference to Scenario I

- Resum logarithmic terms $\ln m_c/m_b$ into short-distance coefficient functions
- Expand analytic terms in powers of $m_c/m_b \sim \sqrt{\Lambda_{QCD}/m_b} \approx 0.3$
- Reproduces Scenario I
Mixing of Operators

Dimension 6 Intrinsic Charm

- Generates mixing into ρ_D^3
- \Rightarrow Renormalization group flow

\[
\frac{d}{d \ln \mu} \begin{pmatrix} \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu) \end{pmatrix} = - \begin{pmatrix} 0 & 0 & 0 \\ -2/3 & 0 & 0 \\ 4/3 & 0 & 0 \end{pmatrix} \begin{pmatrix} \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu) \end{pmatrix}
\]

Dimension 7 Intrinsic Charm

- Generates mixing into $m_c^4 \bar{b}_v b_v$
- \Rightarrow RGE flow

$1/m_c^{2n}$ terms also reproduced [hep-ph/0511158]
Mixing of Operators

Dimension 6 Intrinsic Charm

- Generates mixing into ρ_D^3

\Rightarrow Renormalization group flow

$$\frac{d}{d \ln \mu} \begin{pmatrix} \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu) \end{pmatrix} = - \begin{pmatrix} 0 & 0 & 0 \\ -2/3 & 0 & 0 \\ 4/3 & 0 & 0 \end{pmatrix} \begin{pmatrix} \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu) \end{pmatrix}$$

Dimension 7 Intrinsic Charm

- Generates mixing into $m_c^4 \bar{b}_v b_v$

\Rightarrow RGE flow

$\frac{1}{m_c^{2n}}$ terms also reproduced [hep-ph/0511158]
Mixing of Operators

Dimension 6 Intrinsic Charm

- Generates mixing into ρ_D^3

 \[\Rightarrow \text{Renormalization group flow} \]

 \[
 \frac{d}{d \ln \mu} \begin{pmatrix}
 \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu)
 \end{pmatrix} = - \begin{pmatrix}
 0 & 0 & 0 \\ -2/3 & 0 & 0 \\ 4/3 & 0 & 0
 \end{pmatrix} \begin{pmatrix}
 \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu)
 \end{pmatrix}
 \]

Dimension 7 Intrinsic Charm

- Generates mixing into $m_c^4 b_v b_v$

 \[\Rightarrow \text{RGE flow} \]

- $\frac{1}{m_c^{2n}}$ terms also reproduced [hep-ph/0511158]
Scenario III: $m_b \gg m_c \gtrsim \Lambda_{QCD}$

- Charm-quark effects cannot be integrated out perturbatively
 \Rightarrow Define proper power counting

Consequences

- Genuine intrinsic-charm operators exist
 \Rightarrow Hadronic matrix elements of this operators have to be defined at μ_0 with $m_b \geq \mu_0 \gg m_c$

- Matrix elements contain non-analytic dependence on m_c
 \Rightarrow Partonic phase-space integration for calculation of moments has to be modified to avoid double counting
Scenario III: $m_b \gg m_c \gtrsim \Lambda_{\text{QCD}}$

- Charm-quark effects cannot be integrated out perturbatively
 ⇒ Define proper power counting

Consequences

- Genuine intrinsic-charm operators exist
 ⇒ Hadronic matrix elements of this operators have to be defined at μ_0 with $m_b \geq \mu_0 \gg m_c$
- Matrix elements contain non-analytic dependence on m_c
 ⇒ Partonic phase-space integration for calculation of moments has to be modified to avoid double counting
Model: Weak Annihilation in $b \rightarrow u$ Transitions

- Blue: Leading Log from order $1/m_b^3$
- Yellow: Including $1/(m_b^3 m_c^2)$ Corrections
- Red: Model (s.b.)

Model for “Weak-Annihilation” Operator

- Szenario 3: Four quark operator appears: “Weak-Annihilation“
- Renormalization group inspired model

$$\frac{1}{2M_B} \langle B| \bar{b}\gamma^k(1 - \gamma_5)c \bar{c}\gamma^k(1 - \gamma_5)b|B\rangle = \frac{\rho_D^3}{m_b^3} \ln \frac{m_c^2}{m_b^2 + \Lambda^2}$$

- $\Lambda \approx 0.7$ GeV from comparisson with expansion up to $1/m_b^5$

⇒ Estimate of $\mathcal{O}(3\%)$ contribution in $B \rightarrow X_u \ell \nu_\ell$ decays
Model: Weak Annihilation in $b \rightarrow u$ Transitions

Blue: Leading Log from order $1/m_b^3$

Yellow: Including $1/(m_b^3m_c^2)$ Corrections

Red: Model (s.b.)

Model for “Weak-Annihilation” Operator

- Szenario 3: Four quark operator appears: “Weak-Annihilation“
- Renormalization group inspired model

\[
\frac{1}{2M_B} \langle B | \bar{b} \gamma^k (1 - \gamma_5) c \bar{c} \gamma^k (1 - \gamma_5) b | B \rangle = \frac{\rho_D^3}{m_b^3} \ln \frac{m_b^2}{m_c^2 + \Lambda^2}
\]

- $\Lambda \approx 0.7$ GeV from comparison with expansion up to $1/m_b^5$

⇒ Estimate of $\mathcal{O}(3\%)$ contribution in $B \rightarrow X_u \ell \bar{\nu}_\ell$ decays
Model: Weak Annihilation in $b \rightarrow u$ **Transitions**

- **Blue:** Leading Log from order $1/m_b^3$
- **Yellow:** Including $1/(m_b^3 m_c^2)$ Corrections
- **Red:** Model (s.b.)

Model for “Weak-Annihilation” Operator

- **Szenario 3:** Four quark operator appears: “Weak-Annihilation“
- **Renormalization group inspired model**

$$
\frac{1}{2M_B} \langle B| \bar{b} \gamma^k (1 - \gamma_5) c \bar{c} \gamma^k (1 - \gamma_5) b | B \rangle = \frac{\rho_D^3}{m_b^3} \ln \frac{m_b^2}{m_c^2 + \Lambda^2}
$$

- $\Lambda \approx 0.7 \text{ GeV}$ from comparisson with expansion up to $1/m_b^5$

\Rightarrow Estimate of $\mathcal{O}(3\%)$ contribution in $B \rightarrow X_u \ell \bar{\nu}_\ell$ decays
Summary

- Computed corrections of expansion up to $O(1/m_b^5)$ analytically
- Numerical analysis presented
 - Using factorization schema for non-perturbative parameters
 - Very good convergence of HQE
- Error in $|V_{cb}|$ from non-perturbative corrections $O(1\%)$
 - Cannot explain "tension" exclusive vs inclusives $|V_{cb}|$
- Investigation of systematics with charm quark
 - Two scenarios with heavy charm quark \Rightarrow Equal results
 - Light final state quark: Additional operator
- Model estimate of four quark operator
 - One model parameter: Fitted by comparison with $1/m_b^5$ expansion
 - Non-valenz contribution $O(3\%)$ in total rate of $B \rightarrow X_u \ell \bar{\nu}_\ell$
Summary

- Computed corrections of expansion up to $O(1/m_b^5)$ analytically
- Numerical analysis presented
 - Using factorization schema for non-perturbative parameters
 - Very good convergence of HQE
- Error in $|V_{cb}|$ from non-perturbative corrections $O(1\%)$
 \Rightarrow Cannot explain “tension” exclusive vs inclusives $|V_{cb}|$
- Investigation of systematics with charm quark
 - Two scenarios with heavy charm quark \Rightarrow Equal results
 - Light final state quark: Additional operator
- Model estimate of four quark operator
 - One model parameter: Fitted by comparison with $1/m_b^5$ expansion
 - Non-valenz contribution $O(3\%)$ in total rate of $B \rightarrow X_u \ell \bar{\nu}_\ell$
Summary

- Computed corrections of expansion up to $\mathcal{O}(1/m_b^5)$ analytically
- Numerical analysis presented
 - Using factorization schema for non-perturbative parameters
 - Very good convergence of HQE
- Error in $|V_{cb}|$ from non-perturbative corrections $\mathcal{O}(1\%)$
 \Rightarrow Cannot explain „tension“ exclusive vs inclusives $|V_{cb}|$
- Investigation of systematics with charm quark
 - Two scenarios with heavy charm quark \Rightarrow Equal results
 - Light final state quark: Additional operator
- Model estimate of four quark operator
 - One model parameter: Fitted by comparison with $1/m_b^5$ expansion
 - Non-valenz contribution $\mathcal{O}(3\%)$ in total rate of $B \to X_u \ell \bar{\nu}_\ell$
Computed corrections of expansion up to $\mathcal{O}(1/m_b^5)$ analytically

Numerical analysis presented
- Using factorization schema for non-perturbative parameters
- Very good convergence of HQE

Error in $|V_{cb}|$ from non-perturbative corrections $\mathcal{O}(1\%)$

⇒ Cannot explain „tension“ exclusive vs inclusives $|V_{cb}|$

Investigation of systematics with charm quark
- Two scenarios with heavy charm quark ⇒ Equal results
- Light final state quark: Additional operator

Model estimate of four quark operator
- One model parameter: Fitted by comparison with $1/m_b^5$ expansion
- Non-valenz contribution $\mathcal{O}(3\%)$ in total rate of $B \rightarrow X_u \ell \bar{\nu}_\ell$
Summary

- Computed corrections of expansion up to $O(1/m_b^5)$ analytically
- Numerical analysis presented
 - Using factorization schema for non-perturbative parameters
 - Very good convergence of HQE
- Error in $|V_{cb}|$ from non-perturbative corrections $O(1\%)$
 ⇒ Cannot explain „tension“ exclusive vs inclusives $|V_{cb}|$
- Investigation of systematics with charm quark
 - Two scenarios with heavy charm quark ⇒ Equal results
 - Light final state quark: Additional operator
- Model estimate of four quark operator
 - One model parameter: Fitted by comparison with $1/m_b^5$ expansion
 - Non-valenz contribution $O(3\%)$ in total rate of $B \to X_u \ell \bar{\nu}_\ell$